安全监控系统为什么必须具备实时上传监控数据的功能
1,矿井安全监测监控系统必须具备:监测甲烷浓度、一氧化碳浓度、二氧化碳浓度、氧气浓度、硫化氢浓度、矿尘浓度、风速、风压、湿度、温度、馈电状态、风门状态、风筒状态、局部通风机开停、主要风机开停等,并实现甲烷超限声光报警、断电和甲烷风电闭锁控制等功能。2,矿井安全监测监控系统作用:矿井安全监测监控系统是传感器技术、信息传输技术、 计算机应用技术、电气防爆技术和控制技术等多种技术在矿井安全生产监控领域应用的产物,对保障煤矿安全生产,提高生产效率和机电设备的利用率都具有十分重要的作用。
监控系统为什么采用时间序列数据库
思极有容时序数据库正是普华公司面对这一高速增长的物联网大数据市场和技术挑战推出的创新性的大数据处理产品,它不依赖任何第三方软件,也不是优化或包装了一个开源的数据库或流式计算产品,而是在吸取众多传统关系型数据库、NoSQL数据库、流式计算引擎、消息队列等软件的优点之后自主开发的产品,在时序空间大数据处理上,有着自己独到的优势。· 10倍以上的性能提升:定义了创新的数据存储结构,单核每秒就能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快了十倍以上。· 硬件或云服务成本降至1/5:由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10。· 全栈时序数据处理引擎:将数据库、消息队列、缓存、流式计算等功能融合一起,应用无需再集成Kafka/Redis/HBase/HDFS等软件,大幅降低应用开发和维护的复杂度成本。· 强大的分析功能:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。临时查询可通过Shell, Python, R, Matlab随时进行。· 与第三方工具无缝连接:不用一行代码,即可与Telegraf, Grafana, Matlab, R等工具集成。后续将支持MQTT, OPC等工具, 与BI工具也能够无缝连接。· 零运维成本、零学习成本:安装、集群一秒搞定,无需分库分表,实时备份。支持标准SQL语句,支持JDBC, RESTful连接, 支持Python/Java/C/C++/Go等开发语言, 与MySQL相似,零学习成本。采用思极有容时序数据库,可将典型的物联网、车联网、工业互联网大数据平台的整体成本降至现有的1/5。同样的硬件资源,思极有容时序数据库能将系统处理能力和容量增加五倍以上。同时,相比HBase等数据库,使用普华思极有容时序数据库来存储有以下优势:1. 存储空间大幅节省,估计不到HBase的1/102. 服务器资源大幅节省,估计不到1/53. 查询速度提高至少10倍4. 提供异地容灾备份方案5. 支持通过标准SQL进行即席查询6. 数据超过保留时长,自动删除7. 零管理,安装、部署、维护极其简单,一键搞定
数据质量监控模块的异常数据目前有哪几类
大数据处理中数据质量监控,从以下几个方面进行:
数据容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;
数据种类(Variety):数据类型的多样性;
数据速度(Velocity):指获得数据的速度;
数据可变性(Variability):妨碍了处理和有效地管理数据的过程;
数据真实性(Veracity):数据的质量;
数据复杂性(Complexity):数据量巨大,来源多渠道。
“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的概念要从哪几个方面进行分析理解
大数据概念包含几个方面的内涵吧
1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处理。
2. 要求快速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。
3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据。
4. 价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。
很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。
随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。
如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等商业大数据BI工具。
随着互联网和移动的快速发展,大数据在各个领域不断增加应用。也越来越面向个人大数据应用。