初三数学知识点有哪些
初三重要数学知识点有哪些,考生怎么学?不清楚的小伙伴看过来,下面由我为你精心准备了“初三数学知识点有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯! 初三数学知识点有哪些 第一章有理数 一、知识框架 二、知识概念 1.有理数: (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ① ② 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题. 体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。 第二章整式的加减 一.知识框架 二.知识概念 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。 通过本章学习,应使学生达到以下学习目标: 1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。 2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。 3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。 4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。 在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。 第三章一元一次方程 一.知识框架 二.知识概念 1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0). 3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解). 4.列一元一次方程解应用题: (1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: ………… 多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式: (1)行程问题: 距离=速度·时间 ; (2)工程问题: 工作量=工效·工时 ; (3)比率问题: 部分=全体·比率 ; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折· ,利润=售价-成本, ; (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h. 本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。 初中数学成绩不好怎么办 1、提高数学学习能力,有利于对成绩的提升,提高在数学课堂上的注意力,提高对于数学的兴趣,提高对于数字的学习能力以及对于数字的敏感度和记忆力,由此来提高数学成绩; 2、把一些数学公式和数学定理整理出来,方便查找和温习,背诵理解数学公式和定理,完善对于数学的理解,由此可以提高成绩; 3、整理曾经的错题,对于数学错题反复查看和理解,对于成绩提高也十分有作用; 4、树立正确的考试观,对于数学成绩要合理对待。 拓展阅读:初一数学差的补救方法 培养学生学习数学的兴趣 兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习。培养学生数学学习兴趣的途径很多,如让学生积极参与教学活动,并让其体验到成功的愉悦;创设一个适度的学习竞赛环境;发挥趣味数学的作用;提高教师自身的教学艺术等等。 教会学生学习 1、加强学法指导,培养良好学习习惯反复使用的方法将变成人们的习惯行为。什么是良好的学习习惯?我向学生做了如下具体解释,它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 2、制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。 认真“听” 为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。 学习小技巧 1.学好数学要抓住三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。 2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。 3.一定要全面了解数学概念,不能以偏概全。 4.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。 5.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。 6.要主动提高综合分析问题的能力,借助文字阅读去分析理解。
初三数学知识点有哪些?
初三数学知识点有:一、锐角三角形函数1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA=a/c;2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA=b/c;3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA=a/b;4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA=b/a。二、相似三角形两个对应角相等,对应边成比例的三角形叫做相似三角形。两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。三、圆和圆的位置关系若连心线长为d,两圆的半径分别为R,r,则:1、两圆外离<=>d>R+r;2、两圆外切<=>d=R+r;3、两圆相交<=>R-r<d<R+r(R>r)。四、二次函数的概念一般地,如果y=ax+bx+c(a,bc是常数,a≠0),那么y叫做x的二次函数。y=ax+bx+c(a,bc是常数,a≠0)叫做二次函数的一般式。五、中心对称的性质1、关于中心对称的两个图形是全等形。2、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。3、关于中心对称的两个图形,对应线段平行且相等。
初三数学常考知识点重点归纳
数学知识点整理可以帮助到考前复习,下面我就大家整理一下初三数学常考知识点重点归纳是多少,仅供参考。
初三数学易错知识点整理
1、有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。弄不清绝对值与数的分类。选择题考得比较多。
2、关于实数的运算,要掌握好与实数的有关概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
3、平方根、算术平方根、立方根的区别。
4、分式值为零时易忽略分母不能为零。
5、分式运算要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题易考。
相似三角形常见考点
考点:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.
考点:平行线分线段成比例定理、 三角形 一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.
考点:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.
考点:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.
函数与算式知识点
易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
以上就是我为大家整理的初三数学常考知识点重点归纳是多少。
初三数学重要知识点归纳
很多同学想知道初三数学重要知识点有哪些?下面和我具体了解一下吧,供大家参考。 圆的概念 (1)、确定一个圆的要素是圆心和半径。 (2)①连结圆上任意两点的线段叫做弦。②经过圆心的弦叫做直径。③圆上任意两点间的部分叫做圆弧,简称弧。④小于半圆周的圆弧叫做劣弧。⑤大于半圆周的圆弧叫做优弧。⑥在同圆或等圆中,能够互相重合的弧叫做等弧。⑦顶点在圆上,并且两边和圆相交的角叫圆周角。⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。 圆的有关性质 (1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。 (2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。 (3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90。90的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 (4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。 (5)定理:不在同一条直线上的三个点确定一个圆。 (6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。 (7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等; (8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。 (9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。 (10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。 有理数的运算 加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 一元二次方程的解法 大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。 (1)配方法 利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。 (2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。
初三数学知识点总结归纳
只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。 目录 初三新学期数学知识点 初三数学上册知识点归纳 初三数学复习五大方法 初三新学期数学知识点 一、圆的定义 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质 1、圆的对称性 (1)圆是图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O的半径为r,OP=d。 初三数学上册知识点归纳 1.数的分类及概念数系表: 说明:分类的原则:1)相称(不重、不漏)2)有标准 2.非负数:正实数与零的统称。(表为:x0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数: ①定义及表示法 ②性质:A.a1/a(a1);B.1/a中,aC.0 4.相反数: ①定义及表示法 ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴: ①定义(三要素) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.绝对值: ①定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 ②│a│0,符号││是非负数的标志; ③数a的绝对值只有一个; ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。 初三数学复习五大方法 一、回归课本,夯实基础,做好预习。 数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。复习课的内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。 二、抓住关键,突出重点,不以题量论英雄 学好数学要做大量的题,但反过来做了大量的题,数学不一定好。“不要以题量论英雄”,题海战术,有时候往往起到事倍功半的效果,因此要提高解题的效率。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,但是要有针对性地做题,突出重点,抓住关键。 复习中,所谓突出重点,主要是指突出教材中的重点知识,突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。数学思想与方法是数学的精髓,是联系数学中各类知识的纽带。要抓住教材中的重点内容,掌握分析方法,从不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。培养正确地把日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。 三、提高复习兴趣,克服“高原现象” 高原现象在数学复习阶段表现得十分明显。平时授新课,新鲜有趣;搞复习,要重复已学的内容,有的同学会觉得单调、枯燥无味,致使成绩提高缓慢,甚至下降。针对这种情况,提醒同学们,一方面要从思想上提高对复习的认识,主动进行复习;另一方面,要以“新”提高复习的积极性。诸如制订新的复习计划;采用灵活的 复习方法 ;抓住新颖有趣的内容和习题,把知识串连起来,使书“由厚变薄”。 四、提高课堂听课效率,多动脑,勤动手 初三的课只有两种形式:复习课和评讲课,到初三所有课都进入复习阶段,通过复习,学生要知道自己哪些知识点掌握的比较好,哪些知识点有待提高,因此在复习课之前一定要有自已的思考,这样听课的目的就明确了。现在学生手中都会有一些复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的旧知识,可进行查漏补缺,以减少听课过程中的困难,自己理解了的东西与老师的讲解进行比较、分析即可提高自己的数学思维;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,事半功倍。此外对于老师讲课中的难点,重点要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。 五、要养成良好的解题习惯 如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学),自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是初三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。 初三数学知识点 总结 归纳相关 文章 : ★ 初三数学知识点考点归纳总结 ★ 初三数学知识点归纳总结 ★ 初三数学知识点归纳人教版 ★ 初三数学知识点上册总结归纳 ★ 最新初三数学知识点总结大全 ★ 初三数学中考复习重点章节知识点归纳 ★ 初三数学复习知识点总结 ★ 初三中考数学知识点归纳总结 ★ 中考数学知识点总结最全提纲 ★ 初三数学知识点总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
初三数学重点知识点总结归纳
初三学习的知识是初中三年学习的汇总,为了方便大家更好地复习数学,以下是我分享给大家的初三数学重点知识点,希望可以帮到你!
初三数学重点知识点
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的 ***
5.圆的内部可以看作是圆心的距离小于半径的点的 ***
6.圆的外部可以看作是圆心的距离大于半径的点的 ***
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 d>R+r
②两圆外切 d=R+r
③.两圆相交 R-rr
④.两圆内切 d=R-rR>r ⑤两圆内含dr
21.定理 相交两圆的连心线垂直平分两圆的公共弦
22.定理 把圆分成nn≥3:
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于n-2×180°/n
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×n-2180°/n=360°化为n-2k-2=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-R-r 外公切线长= d-R+r
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 半圆或直径所对的圆周角是直角;90°的圆周角所 对的弦是直径
35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
初三数学复习技巧
注重课本知识
全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查询一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
注重课堂学习
在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联络,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联络和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
夯实基础知识
在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
注意知识的迁移
课本中的某些例题、习题,并不是孤立的,而是前后联络、密切相关的,其他学科的知识也和数学有着千丝万缕的联络,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联络,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网路和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联络,让我们在深刻理解课本知识的同时,更有效地形成知识网路与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函式图象与横轴的交点座标。
初三数学复习计划
第一阶段:知识梳理形成知识网路
1、第一轮复习的形式,以中考说明为主线,注重基础知识的梳理。
第一轮复习要“过三关”:
1过记忆关。必须做到记牢记准所有的公式、定理等。
2过基本方法关。如,待定系数法求二次函式解析式。
3过基本技能关。如,数形结合的题目,要求能画图能做出。
2、第一轮复习应该注意的几个问题
1必须夯实基础。一般中考试题按易:较易:中:难=4:3:2:1的比例,要求在应用基础知识时能做到熟练、正确和迅速。
2中考有些基础题是课本上、说明上的原题或改造,必须深钻教材与说明,绝不能好高骛远。
3不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,要有针对性的、典型性、层次性、切中要害的强化练习。
4多归纳、多总结。
第二阶段:专题复习
1、第二轮复习的形式,不再以节、章、单元为单位,而是以专题为单位。
在一轮复习的基础上,进行拔高、集中、归类,重点难点热点突出复习,注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
2、第二轮复习应该注意的几个问题
1第二轮复习可对平时遇到的难点、误点设立专题。
2专题的划分要合理,要有代表性,切忌面面俱到;围绕热点、难点、重点,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。
3以题代知识,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。可适当穿插过去的小知识点,以引起记忆。
4专题复习可适当拔高。没有一定的难度,你的能力是很难提高的,提高学习的能力,这是第二轮复习的任务。但不要过于多和难。
第三阶段:综合训练
1、第三轮复习的形式是模拟中考的综合演练,查漏补缺,俗称考前练兵。训练答题技巧、考场心态、临场发挥的能力等。
2、第三轮复习应该注意的几个问题
1模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,要贴近中考模式。
2归集错题,查漏补缺。
3适当的“解放”自己,特别是在时间安排上。但要注意,解放不是放松,后期题量不宜太大,要轻松解题、居高临下解题,能跳出复习的圈子看试题。
4调节生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合。
5心态和信心调整。保持一颗平常心。
第四阶段:查漏补缺
对自己仍然模糊的或已忘记的知识回归课本,进一步巩固和加深,迎接中考。
总之,在初三数学总复习中,发掘教材,夯实基础是根本;共同参与,注重过程是前提;精选习题,提质减负是核心;强化训练,发展能力是目的。只有这样,才能以不变应万变,以一题带一片,达到事半功倍的效果。
1.初三上册数学知识点总结
2.中考数学知识点总结大全
3.初中数学重点知识点
4.初三数学知识点整理
5.初三数学总复习知识点
初三数学主要知识点
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。 九年级下册数学知识点 圆 ★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。 ☆内容提要☆ 一、圆的基本性质 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3.“三点定圆”定理 4.垂径定理及其推论 5.“等对等”定理及其推论 6.与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.切线的性质(重点) 2.切线的判定定理(重点) 3.切线长定理 三、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切) 2.相切(交)两圆连心线的性质定理 3.两圆的公切线:⑴定义⑵性质 四、与圆有关的比例线段 1.相交弦定理 2.切割线定理 五、与和正多边形 1.圆的内接、外切多边形(三角形、四边形) 2.三角形的外接圆、内切圆及性质 3.圆的外切四边形、内接四边形的性质 4.正多边形及计算 中心角:初中数学复习提纲 内角的一半:初中数学复习提纲(右图) (解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等) 六、一组计算公式 1.圆周长公式 2.圆面积公式 3.扇形面积公式 4.弧长公式 5.弓形面积的计算方法 6.圆柱、圆锥的侧面展开图及相关计算 七、点的轨迹 六条基本轨迹 八、有关作图 1.作三角形的外接圆、内切圆 2.平分已知弧 3.作已知两线段的比例中项 4.等分圆周:4、8;6、3等分 九、重要辅助线 1.作半径 2.见弦往往作弦心距 3.见直径往往作直径上的圆周角 4.切点圆心莫忘连 5.两圆相切公切线(连心线) 6.两圆相交公共弦 初三下册数学知识点 总结 一、锐角三角函数 正弦等于对边比斜边 余弦等于邻边比斜边 正切等于对边比邻边 余切等于邻边比对边 正割等于斜边比邻边 二、三角函数的计算 幂级数 c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞) 它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数. 泰勒展开式(幂级数展开法) f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+... 三、解直角三角形 1.直角三角形两个锐角互余。 2.直角三角形的三条高交点在一个顶点上。 3.勾股定理:两直角边平方和等于斜边平方 四、利用三角函数测高 1、解直角三角形的应用 (1)通过解直角三角形能解决实际问题中的很多有关测量问. 如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度. (2)解直角三角形的一般过程是: ①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题). ②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案. 初三数学复习资料 轴对称知识点 1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。 2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 3.角平分线上的点到角两边距离相等。 4.线段垂直平分线上的任意一点到线段两个端点的距离相等。 5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 6.轴对称图形上对应线段相等、对应角相等。 7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。 8.点(x,y)关于x轴对称的点的坐标为(x,-y) 点(x,y)关于y轴对称的点的坐标为(-x,y) 点(x,y)关于原点轴对称的点的坐标为(-x,-y) 9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角) 等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。 10.等腰三角形的判定:等角对等边。 11.等边三角形的三个内角相等,等于60, 12.等边三角形的判定:三个角都相等的三角形是等腰三角形。 有一个角是60的等腰三角形是等边三角形 有两个角是60的三角形是等边三角形。 13.直角三角形中,30角所对的直角边等于斜边的一半。 不等式 1.掌握不等式的基本性质,并会灵活运用: (1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。 (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。 (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac 2.比较大小:(a、b分别表示两个实数或整式) 一般地: 如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b; 如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b; 如果a 即:a>ba-b>0;a=ba-b=0;aa-b<0。 3.不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。 4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。 初三数学主要知识点相关 文章 : ★ 初三数学知识点考点归纳总结 ★ 中考数学最全考点分析主要知识点 ★ 初三数学知识点归纳总结 ★ 初三数学中考复习重点章节知识点归纳 ★ 九年级数学上册重要知识点总结 ★ 最新初三数学知识点总结大全 ★ 初三数学知识点整理 ★ 初三数学知识点上册总结归纳 ★ 初三数学复习知识点总结
初三数学知识点归纳大全
初三数学平行四边形的性质知识点归纳 知识点总结 1.定义:两组对边分别平行的四边形叫平行四边形 2.平行四边形的性质 (1)平行四边形的对边平行且相等; (2)平行四边形的邻角互补,对角相等; (3)平行四边形的对角线互相平分; 我推荐阅读:初中复读如何提高数学成绩?几招教你数学过百 3.平行四边形的判定 平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分: 第一类:与四边形的对边有关 (1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形; 第二类:与四边形的对角有关 (4)两组对角分别相等的四边形是平行四边形; 第三类:与四边形的对角线有关 (5)对角线互相平分的四边形是平行四边形 初三数学垂直平分线的性质知识点归纳 垂直平分线 经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。 垂直平分线的性质 1.垂直平分线垂直且平分其所在线段。 2.垂直平分线上任意一点,到线段两端点的距离相等。 3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。 4.线段垂直平分线上的点和这条线段两个端点的距离相等 。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 5.三角形三条边的垂直平分线相交于一点,该点叫外心(circumcenter),并且这一点到三个顶点的距离相 等。(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。) 垂直平分线的逆定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明 通常来说,垂直平分线会与全等三角形来使用。 垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。 巧记方法:点到线段两端距离相等。 可以通过全等三角形证明。 垂直平分线的尺规作法 初三数学一次函数的图像知识点归纳 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 以上就是我为大家整理的初三数学知识点归纳,希望能帮助到大家,更多中考信息可以继续关注本站!
初三数学知识点整理归纳
为了方便大家系统的复习初三数学的重要知识点,现将我整理归纳的初三数学知识点分享出来,供参考。 旋转的相关知识点 1.旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。点O叫做旋转中心,转动的角叫做旋转角。如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。 2.旋转的性质: (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前后的图形全等。 3.作图: 在画旋转图形时,要把握旋转中心与旋转角这两个元素。确定旋转中心的关键是看图形在旋转过程中某一点是“动”还是“不动”,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角。 作图的步骤: (1)连接图形中的每一个关键点与旋转中心; (2)把连线按要求绕旋转中心旋转一定的角度(旋转角); (3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点; (4)连接所得到的各对应点。 二次函数 (一)二次函数的三种表达式 二次函数的一般式为:y=ax²+bx+c(a≠0)。 二次函数的顶点式:y=a(x-h)²+k 顶点坐标为(h,k) 二次函数的交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0) (二)二次函数的性质 (1)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。 (2)二次项系数a决定抛物线的开口方向和大小。 (3)一次项系数b和二次项系数a共同决定对称轴的位置。 (4)常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。 (三)二次函数的对称轴公式 二次函数图像是轴对称图形。对称轴为直线x=-b/2a。 对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。 特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。 a,b同号,对称轴在y轴左侧; a,b异号,对称轴在y轴右侧。 中心对称与中心对称图形 1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。 2.中心对称的两条基本性质: (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。 (2)关于中心对称的两个图形是全等图形。 3.中心对称图形 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 圆的必考知识点 (一)圆 在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。 (二)圆的相关特点 1.径 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d 直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r 2.弦 连接圆上任意两点的线段叫做弦.在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。 3.弧 圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。 大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。 在同圆或等圆中,能够互相重合的两条弧叫做等弧。 4.角 顶点在圆心上的角叫做圆心角。 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
初三数学知识点归纳
想了解初中数学知识,想提高数学成绩的小伙伴,赶紧过来瞧一瞧吧。下面由我为你精心准备了“初三数学知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的知识点! 初三数学知识点归纳 一、有理数。 1、大于0的数叫做正数。 2、在正数前面加上负号“-”的数叫做负数。 3、整数和分数统称为有理数。 4、人们通常用一条直线上的点表示数,这条直线叫做数轴。 5、在直线上任取一个点表示数0,这个点叫做原点。 6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。 7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。 8、正数大于0,0大于负数,正数大于负数。 9、两个负数,绝对值大的反而小。 10、有理数加法法则。 (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 (3)一个数同0相加,仍得这个数。 二、整式的加减。 1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。 2、单项式中的数字因数叫做这个单项式的系数。 3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。 4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。 5、多项式里次数最高项的次数,叫做这个多项式的次数。 6、把多项式中的同类项合并成一项,叫做合并同类项。 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。 7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。 8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。 三、一元一次方程。 1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。 2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。 3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。 4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。 6、把等式一边的某项变号后移到另一边,叫做移项。 7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间。 盈亏问题:利润=售价-成本利率=利润÷成本×100%。 售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间。 本息和=本金+利息。 四、图形初步认识。 1、我们把实物中抽象的各种图形统称为几何图形。 2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。 3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。 4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 5、几何体简称为体。 6、包围着体的是面,面有平的面和曲的面两种。 7、面与面相交的地方形成线,线和线相交的地方是点。 8、点动成面,面动成线,线动成体。 9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。 简述为:两点确定一条直线(公理)。 10、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 拓展阅读:数学学习方法 1.求教与自学相结合。 在学习过程中,即要争取教师的指导和帮助,但是又不能处处依赖教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。 2.学习与思考相结合。 在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。 3.学用结合,勤于实践。 在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。 4.博观约取,由博返约。 课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。 5.既有模仿,又有创新。 模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。 6.及时复习增强记忆。 课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。 7.阅读理解。 目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。 8.提高听课质量要培养会听课,听懂课的习惯。 注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。 初中数学速记口诀 1.最简根式的条件。 最简根式三条件,号内不把分母含。 幂指(数)根指(数)要互质,幂指比根指小一点。 2.特殊点的坐标特征。 坐标平面点(x,y),横在前来纵在后。 (+,+),(-,+),(-,-)和(+,-),四个象限分前后。 x轴上y为0,x为0在y轴。 3.象限角的平分线。 象限角的平分线,坐标特征有特点。 一、三横纵都相等,二、四横纵确相反。 4.平行某轴的直线。 平行某轴的直线,点的坐标有讲究。 直线平行x轴,纵坐标相等横不同。 直线平行于y轴,点的横坐标仍照旧。 5.对称点的坐标。 对称点坐标要记牢,相反数位置莫混淆。 x轴对称y相反,y轴对称,x前面添负号。 原点对称最好记,横纵坐标变符号。 6.自变量的取值范围。 分式分母不为零,偶次根下负不行。 零次幂底数不为零,整式、奇次根全能行。 7.函数图象的移动规律。 左右平移在括号,上下平移在末稍。 左正右负须牢记,上正下负错不了。 8.一次函数的图象与性质的口诀。 一次函数是直线,图象经过三象限。 正比例函数更简单,经过原点一直线。 两个系数k与b,作用之大莫小看。 k是斜率定夹角,b与y轴来相见。 k为正来右上斜,x增减y增减。 k为负来左下展,变化规律正相反。 k的绝对值越大,线离横轴就越远。 9.二次函数的图象与性质的口诀。 二次函数抛物线,图象对称是关键。 开口、顶点和交点,它们确定图象现。 开口、大小由a断,c与y轴来相见。 b的符号较特别,符号与a相关联。 10.反比例函数的图象与性质的口诀。 反比例函数有特点,双曲线相背离得远。 k为正,图在一、三(象)限,k为负。 图在二、四(象)限;图在一、三函数减,两个分支分别减。 图在二、四正相反,两个分支分别增。 11.平行四边形的判定。 要证平行四边形,两个条件才能行。 一证对边都相等,或证对边都平行。 一组对边也可以,必须相等且平行。 对角线,是个宝,互相平分“跑不了”。 对角相等也有用,“两组对角”才能成。 12.二次函数抛物线。 选定需要三个点,a的正负开口判。 c的大小y轴看,△的符号最简便。 x轴上数交点,a、b同号轴左边。 抛物线平移a不变,顶点牵着图象转。 三种形式可变换,配方法作用最关键。