高一数学期末试题

时间:2024-04-15 09:46:35编辑:coo君

高一下数学期末试卷

第 1 页 第 1 页 共 4 页 高一下学期数学测试 一、选择题 1、已知sinx=54 -,且x在第三象限,则tanx= A. 4 3.43.34.3 4DCB 2. 己知向量)2,1(a,则||a A.5.5.5.5 DCB 3.)2,1(a,)2,1(b,则ba A.(-1,4) B、3 C、(0,4) D、 3 4.)2,1(a,)2,1(b,ba与所成的角为x则cosx= A. 3 B. 53 C. 515 D.-5 15 5.在平行四边形ABCD中,以下错误的是 A、BDABADDDBABADCACABADBBC AD... 6、把函数y=sin2x的图象向右平移6  个单位后,得到的函数解析式是( ) (A)y=sin(2x+ 3) (B)y=sin(2x+6)(C)y=sin(2x-3) (D)y=sin(2x-6 ) 7、sin5°sin25°-sin95°sin65°的值是( ) (A) 21 (B)-21 (C)23 (D)-2 3 8、函数y=tan(3 2 x)的单调递增区间是( ) (A)(2kπ- 32,2kπ+34) kZ (B)(2kπ-35,2kπ+3 ) kZ (C)(4kπ-32,4kπ+34) kZ (D)(kπ-35,kπ+3 ) kZ 9、设0<α<β<2 ,sinα=53,cos(α-β)=1312 ,则sinβ的值为( ) (A) 65 16 (B)6533 (C)6556 (D)6563 2014高中期末考试题库 语文 数学 英语 物理 化学 第 2 页 第 2 页 共 4 页 10、△ABC中,已知tanA=31,tanB=2 1 ,则∠C等于( ) (A)30° (B)45° (C)60° (D)135° 11、如果是第三象限的角,而且它满足2sin2cossin1,那么2 是( ) (A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角 12、y=sin(2x+2 5 π)的图象的一条对称轴是( ) (A)x=- 2  (B)x=-4 (C)x=8 (D)x=45 13、已知0<θ< 4  ,则2sin1等于( ) (A)cosθ-sinθ (B)sinθ-cosθ (C)2cosθ (D)2cosθ 14、函数y=3sin(2x+ 3  )的图象可以看作是把函数y=3sin2x的图象作下列移动而 得到( ) (A)向左平移3单位 (B)向右平移3 单位 (C)向左平移 6单位 (D)向右平移6  单位 15、若sin2x>cos2x,则x的取值范围是( ) (A){x|2kπ-43π<x<2kπ+4,kZ } (B){x|2kπ+4 <x<2kπ+45 π,kZ} (C){x|kπ- 4<x<kπ+4π,kZ} (D){x|kπ+4<x<kπ+4 3 π,kZ} 二、填空题: 16、函数y=cos2x-8cosx的值域是 。 17、函数y=|cos(2x- 3  )|的最小正周期为 。 18、将函数y=sin2 1 x的图象上各点的横坐标扩大为原来的2倍(纵坐标不变),然后把所得图象向右平移 3  个单位后,所得图象对应的函数的解析式为 。 19、已知函数y=-cos(3x+1),则它的递增区间是 。 20、函数y=a+bcosx(b<0)的最大值为7,最小值为-1,则函数y=sin[(ab)x+3  ]的最小正周期为 。 第 3 页 第 3 页 共 4 页 三、解答题: 20、(本题12分)己知函数f(x)=cos2x-sin2x+2sinx·cosx,求f(x)的最小正周期,并求当x为何值时f(x)有最大值,最大值等于多少? 21、(本题12分)己知),2,(,5 3 2sinxx且 (1)求的值xtan (2) 求的值xsin


高一数学下册期末试卷及答案

心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于 高一数学 下册期末试卷及答案,希望对大家有所帮助。 一.选择题 1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为(  ) A.-1         B.0 C.3 D.不确定 [答案] B [解析] 因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数. ∴x1+x2+x3=0. 2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,b]内(  ) A.至少有一实数根 B.至多有一实数根 C.没有实数根 D.有惟一实数根 [答案] D [解析] ∵f(x)为单调减函数, x∈[a,b]且f(a)?f(b)<0, ∴f(x)在[a,b]内有惟一实根x=0. 3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)(  ) A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1,(1,e)内均无零点 C.在区间1e,1内有零点;在区间(1,e)内无零点 D.在区间1e,1内无零点,在区间(1,e)内有零点 [答案] D [解析] ∵f(x)=13x-lnx(x>0), ∴f(e)=13e-1<0, f(1)=13>0,f(1e)=13e+1>0, ∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D. 4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是(  ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) [答案] C [解析] ∵f(0)=-10, 即f(0)f(1)<0, ∴由零点定理知,该函数零点在区间(0,1)内. 5.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是(  ) A.m≤1 B.0C.m>1 D.0[答案] B [解析] 设方程x2+(m-3)x+m=0的两根为x1,x2,则有Δ=(m-3)2-4m≥0,且x1+x2=3-m>0,x1?x2=m>0,解得06.函数f(x)=(x-1)ln(x-2)x-3的零点有(  ) A.0个 B.1个 C.2个 D.3个 [答案] A [解析] 令f(x)=0得,(x-1)ln(x-2)x-3=0, ∴x-1=0或ln(x-2)=0,∴x=1或x=3, ∵x=1时,ln(x-2)无意义, x=3时,分母为零, ∴1和3都不是f(x)的零点,∴f(x)无零点,故选A. 7.函数y=3x-1x2的一个零点是(  ) A.-1 B.1 C.(-1,0) D.(1,0) [答案] B [点评] 要准确掌握概念,“零点”是一个数,不是一个点. 8.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为(  ) A.至多有一个 B.有一个或两个 C.有且仅有一个 D.一个也没有 [答案] C [解析] 若a=0,则b≠0,此时f(x)=bx+c为单调函数, ∵f(1)>0,f(2)<0,∴f(x)在(1,2)上有且仅有一个零点; 若a≠0,则f(x)为开口向上或向下的抛物线,若在(1,2)上有两个零点或无零点,则必有f(1)?f(2)>0, ∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C. 9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间为(  ) A.0,14 B.14,12 C.12,1 D.(1,2) [答案] B [解析] ∵f14=214-log1214=42-20,f(x)在x>0时连续,∴选B. 10.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为(  ) x -1 0 1 2 3 ex 0.37 1 2.72 7.39 20.09 A.(-1,0) B.(0,1) C.(1,2) D.(2,3) [答案] C [解析] 令f(x)=ex-x-2,则f(1)?f(2)=(e-3)(e2-4)<0,故选C. 二、填空题 11.方程2x=x3精确到0.1的一个近似解是________. [答案] 1.4 12.方程ex-x-2=0在实数范围内的解有________个. [答案] 2 三、解答题 13.借助计算器或计算机,用二分法求方程2x-x2=0在区间(-1,0)内的实数解(精确到0.01). [解析] 令f(x)=2x-x2,∵f(-1)=2-1-(-1)2=-120, 说明方程f(x)=0在区间(-1,0)内有一个零点. 取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)≈0.46>0.因为f(-1)?f(-0.5)<0,所以x0∈(-1,-0.5). 再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈-0.03>0.因为f(-1)?f(-0.75)<0,所以x0∈(-1,-0.75). 同理,可得x0∈(-0.875,-0.75),x0∈(-0.8125,-0.75),x0∈(-0.78125,-0.75),x0∈(-0.78125,-0.765625),x0∈(-0.7734375,-0.765625). 由于|(-0.765625)-(0.7734375)|<0.01,此时区间(-0.7734375,-0.765625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x-x2=0精确到0.01的近似解约为-0.77. 14.证明方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2. [解析] 令f(x)=(x-2)(x-5)-1 ∵f(2)=f(5)=-10. f(6)=3>0. ∴f(x)在(0,2)和(5,6)内都有零点,又f(x)为二次函数,故f(x)有两个相异实根,且一个大于5、一个小于2. 15.求函数y=x3-2x2-x+2的零点,并画出它的简图. [解析] 因为x3-2x2-x+2=x2(x-2)-(x-2) =(x-2)(x2-1)=(x-2)(x-1)(x+1), 所以函数的零点为-1,1,2. 3个零点把x轴分成4个区间: (-∞,-1],[-1,1],[1,2],[2,+∞]. 在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值(取精确到0.01的近似值)表: x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 … y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 … 在直角坐标系内描点连线,这个函数的图象如图所示. 16.借助计算器或计算机用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.(精确到0.1) [解析] 原方程为x3-4x2+x+5=0,令f(x)=x3-4x2+x+5.∵f(-1)=-1,f(0)=5,f(-1)?f(0)<0,∴函数f(x)在(-1,0)内有零点x0. 取(-1,0)作为计算的初始区间用二分法逐步计算,列表如下 端点或中点横坐标 端点或中点的函数值 定区间 a0=-1,b0=0 f(-1)=-1,f(0)=5 [-1,0] x0=-1+02=-0.5 f(x0)=3.375>0 [-1,-0.5] x1=-1+(-0.5)2=-0.75 f(x1)≈1.578>0 [-1,-0.75] x2=-1+(-0.75)2=-0.875 f(x2)≈0.393>0 [-1,-0.875] x3=-1-0.8752=-0.9375 f(x3)≈-0.277<0 [-0.9375,-0.875] ∵|-0.875-(-0.9375)|=0.0625<0.1, ∴原方程在(-1,0)内精确到0.1的近似解为-0.9. 17.若函数f(x)=log3(ax2-x+a)有零点,求a的取值范围. [解析] ∵f(x)=log3(ax2-x+a)有零点, ∴log3(ax2-x+a)=0有解.∴ax2-x+a=1有解. 当a=0时,x=-1. 当a≠0时,若ax2-x+a-1=0有解, 则Δ=1-4a(a-1)≥0,即4a2-4a-1≤0, 解得1-22≤a≤1+22且a≠0. 综上所述,1-22≤a≤1+22. 18.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1). [解析] 设函数f(x)=x3-x-1,因为f(1)=-10,且函数f(x)=x3-x-1的图象是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解. 取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)=-0.30<0.因为f(1.25)?f(1.5)<0,所以x0∈(1.25,1.5). 再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0.因为f(1.25)?f(1.375)<0,所以x0∈(1.25,1.375). 同理,可得x0∈(1.3125,1.375),x0∈(1.3125,1.34375). 由于|1.34375-1.3125|<0.1,此时区间(1.3125,1.34375)的两个端点精确到0.1的近似值是1.3,所以方程x3-x-1=0在区间[1,1.5]精确到0.1的近似解约为1.3. 高一数学下册期末试卷及答案相关 文章 : ★ 高一数学下册期末试卷及答案 ★ 高一数学下学期期末试卷及参考答案 ★ 高一年级数学试卷下册期末 ★ 高一数学期末考试知识点总结 ★ 2020高一期末数学复习计划汇总精选 ★ 高一数学考试反思5篇 ★ 高一期末考试数学备考方法 ★ 高一期末数学复习计划5篇 ★ 2020初一暑假作业参考答案历史(人教版) ★ 高一数学学习方法和技巧大全

高一数学上册期末考哪里

高一数学上册期末考试部分为:一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1. 用拉丁字母表示集合:A={我校的篮球第 2 页队员}B={12345}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,第 3 页然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合第 4 页3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-11} “元素相同”结论:对于两个集合A与B,如果集合A的第 5 页任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。A?A②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A?B B?C 那么 A?C④ 如果A?B 同时 B?A 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算第 6 页1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = AA∪φ= A A∪B = B∪A.4、全集与补集第 7 页(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA ={x ? x?S且 x?A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A= ⑶(CUA)∪A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有第 8 页唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的`y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) t第 9 页an(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((第 10 页1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)第 11 页tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)第 12 页=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|第 13 页一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根降幂公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2第 14 页万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)§1.2.1、函数的概念1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.2、 一个函数的构成要素为:定义域、对第 15 页应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:§1.3.2、奇偶性1、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.


高一期末考试数学试题

  高一期末考试数学试题   一、选择题:(每小题5分,共60分)   1、过点(-1,3)且垂直于直线x-2y+3=0的直线方程是( )   A、x-2y+7=0 B、2x+y-1=0   C、x-2y-5=0 D、2x+y-5=0   2、如图,一个空间几何体的主视图和左视图都是边长相等的正方形,   俯视图是一个圆,那么这个几何体是( )、   A、棱柱 B、圆柱 C、圆台 D、圆锥   3、 直线 :ax+3y+1=0, :2x+(a+1)y+1=0, 若 ∥ ,则a=( )   A、-3 B、2 C、-3或2 D、3或-2   4、已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为( )   A、相交 B、相离 C、内切 D、外切   5、等差数列{an}中, 公差 那么使前 项和 最大的 值为( )   A、5 B、6 C、 5 或6 D、 6或7   6、若 是等比数列, 前n项和 ,则 ( )   A、 B、   7、若变量x,y满足约束条件y1,x+y0,x-y-20,则z=x-2y的最大值为( )   A、4 B、3   C、2 D、1   本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3   8、当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为5的圆的方程为( )   A、x2+y2-2x+4y=0 B、x2+y2+2x+4y=0   C、x2+y2+2x-4y=0 D、x2+y2-2x-4y=0   9、方程 表示的曲线是( )   A、一个圆 B、两个半圆 C、两个圆 D、半圆   10、在△ABC中,A为锐角,lgb+lg( )=lgsinA=-lg , 则△ABC为( )   A、 等腰三角形 B、 等边三角形 C、 直角三角形 D、 等腰直角三角形   11、设P为直线 上的动点,过点P作圆C 的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为( )   A、1 B、 C、 D、   12、设两条直线的方程分别 为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,   且018,则这两条直线之间的距离的最大值和最小值分别是( )、   A、 B、 C、 D、   第II卷(非选择题共90分)   二、填空题:(每小题5分,共20分)   13、空间直角 坐标系中点A和点B的坐标分别是(1,1,2)、(2,3,4),则 ______   14、 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _   15、 若实数 满足 的取值范围为   16、锐角三角形 中,若 ,则下列叙述正确的是   ① ② ③ ④   本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3   三、解答题:(其中17小题10分,其它每小题12分,共70分)   17、直线l经过点P(2,-5),且与点A(3,-2)和B(-1,6)的距离之比为1:2,求直线l的方程、   18、在△ABC中,a,b,c分别是A,B,C的'对边,且2sin A=3cos A、   (1)若a2-c2=b2-mbc,求实数m的值;   (2)若a=3,求△ABC面积的最大值、   19、投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜 销售收入50万元、 设 表示前n年的纯利润总和(f(n)=前n年的总收入一前n年的总支出一投资额)、   (1)该厂从第几年开始盈利?   (2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时, 以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?   20、 设有半径为3 的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇、设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?   21、设数列 的前n项和为 ,若对于任意的正整数n都有 、   (1)设 ,求证:数列 是等比数列,并求出 的通项公式。   (2)求数列 的前n项和、   22、已知曲线C:x2+y2-2x-4y+m=0   (1)当m为何值时,曲线C表示圆;   (2)若曲线C与直线x+2y-4=0交于M、N两点,且OMON(O为坐标原点),求m的值。

高一数学下册期末试卷及答案

心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家带来一些关于 高一数学 下册期末试卷及答案,希望对大家有所帮助。

试题

一选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.已知是第二象限角,,则()

A.B.C.D.

2.集合,,则有()

A.B.C.D.

3.下列各组的两个向量共线的是()

A.B.

C.D.

4.已知向量a=(1,2),b=(x+1,-x),且a⊥b,则x=()

A.2B.23C.1D.0

5.在区间上随机取一个数,使的值介于到1之间的概率为

A.B.C.D.

6.为了得到函数的图象,只需把函数的图象

A.向左平移个单位B.向左平移个单位

C.向右平移个单位D.向右平移个单位

7.函数是()

A.最小正周期为的奇函数B.最小正周期为的偶函数

C.最小正周期为的奇函数D.最小正周期为的偶函数

8.设,,,则()

A.B.C.D.

9.若f(x)=sin(2x+φ)为偶函数,则φ值可能是()

A.π4B.π2C.π3D.π

10.已知函数的值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则下列各式中符合条件的解析式是

A.B.

C.D.

11.已知函数的定义域为,值域为,则的值不可能是()

A.B.C.D.

12.函数的图象与曲线的所有交点的横坐标之和等于

A.2B.3C.4D.6

第Ⅱ卷(非选择题,共60分)

二、填空题(每题5分,共20分)

13.已知向量设与的夹角为,则=.

14.已知的值为

15.已知,则的值

16.函数f(x)=sin(2x-π3)的图像为C,如下结论中正确的是________(写出所有正确结论的编号).

①图像C关于直线x=1112π对称;②图像C关于点(23π,0)对称;③函数f(x)在区间[-π12,512π]内是增函数;④将y=sin2x的图像向右平移π3个单位可得到图像C.、

三、解答题:(共6个题,满分70分,要求写出必要的推理、求解过程)

17.(本小题满分10分)已知.

(Ⅰ)求的值;

(Ⅱ)求的值.

18.(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(35,45),记∠COA=α.

(Ⅰ)求1+sin2α1+cos2α的值;

(Ⅱ)求cos∠COB的值.

19.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),

(1)若a与b-2c垂直,求tan(α+β)的值;

(2)求|b+c|的值.

20.(本小题满分12分)函数f(x)=3sin2x+π6的部分图像如图1-4所示.

(1)写出f(x)的最小正周期及图中x0,y0的值;

(2)求f(x)在区间-π2,-π12上的值和最小值.

21.(本小题满分12分)已知向量的夹角为.

(1)求;(2)若,求的值.

22.(本小题满分12分)已知向量).

函数

(1)求的对称轴。

(2)当时,求的值及对应的值。

参考答案

1-12BCDCDABDBDDC

填空

13141516

17解:(Ⅰ)

由,有,解得………………5分

(Ⅱ)

………………………………………10分

18解:(Ⅰ)∵A的坐标为(35,45),根据三角函数的定义可知,sinα=45,cosα=35

∴1+sin2α1+cos2α=1+2sinαcosα2cos2α=4918.…………………………………6分

(Ⅱ)∵△AOB为正三角形,∴∠AOB=60°.

∴cos∠COB=cos(α+60°)=cosαcos60°-sinαsin60°.=35×12-45×32=3-4310

…………………………………12分

19解(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),

又a与b-2c垂直,

∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,

即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,

∴4sin(α+β)-8cos(α+β)=0,

得tan(α+β)=2.

(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),

∴|b+c|=?sinβ+cosβ?2+16?cosβ-sinβ?2

=17-15sin2β,

当sin2β=-1时,|b+c|max=32=42.

20.解:(1)f(x)的最小正周期为π.

x0=7π6,y0=3.

(2)因为x∈-π2,-π12,所以2x+π6∈-5π6,0.

于是,当2x+π6=0,

即x=-π12时,f(x)取得值0;

当2x+π6=-π2,

即x=-π3时,f(x)取得最小值-3.

21.【答案】(1)-12;(2)

【解析】

试题分析:(1)由题意得,



(2)∵,∴,

∴,∴,

22.(12分)(1)………….1

………………………………….2

……………………………………….4

……………………7

(2)

………………………9

时的值为2…………………………………12




高一数学下册期末试卷及答案相关 文章 :

★ 2017高一数学期中考试试卷答案

★ 四年级数学下册期末试卷附答案

★ 高一期末数学考试题

★ 人教版小学数学四年级下册期末测试附答案

★ 八年级下册期末数学试题附答案

★ 小学一年级下数学测试卷与答案

★ 高中数学集合与函数试卷及答案

★ 2017年四年级数学下册期末试卷及答案

★ 北师大数学高一期末试卷

★ 八年级下册数学试卷及答案


高一上数学题

亲~请发一下题目哟[开心][开心][开心]【摘要】高一上数学题【提问】亲~请发一下题目哟[开心][开心][开心]【回答】【提问】亲~这个题A,C是错误的【回答】马上判断B,D哈[开心][开心][开心]【回答】亲~这个题是多选题,答案为BD[开心][开心][开心]【回答】【回答】亲~这个题我们采用待入特殊值的方法,可以很容易判断出AC是错误的【回答】然后BD也可以采用特殊值,或者相减的方法,可以判断出BD这个等式都是成立的【回答】

高一上学期数学题

高一(上)数学期末考试试题(A卷)
班级 姓名 分数
一、选择题(每小题只有一个答案正确,每小题3分,共36分)
1.已知集合M={ },集合N={ },则M ( )。
(A){ } (B){ }
(C){ } (D)
2.如图,U是全集,M、P、S是U的三个子集,则阴影部分所表示的集合是( )
(A)(M (B)(M
(C)(M P) (CUS) (D)(M P) (CUS)
3.若函数y=f(x)的定义域是[2,4],y=f(log x)的定义域是( )
(A)[ ,1] (B)[4,16]
(C)[ ] (D)[2,4]
4.下列函数中,值域是R+的是( )
(A)y= (B)y=2x+3 x )
(C)y=x2+x+1 (D)y=
5.已知 的三个内角分别是A、B、C,B=60°是A、B、C的大小成等差数列的( )
(A)充分非必要条件 (B)必要非充分条件
(C)充要条件 (D)既非充分也非必要条件
6.设偶函数f(x)的定义域为R,当x 时f(x)是增函数,则f(-2),f( ),f(-3)的大小关系是( )
(A)f( )>f(-3)>f(-2) (B)f( )>f(-2)>f(-3)
(C)f( )<f(-3)<f(-2) (D)f( )<f(-2)<f(-3)
7.a=log0.70.8,b=log1.10.9,C=1.10.9,那么( )
(A)a<b<c (B)a<c<b (C)b<a<c (D)C<a<b
8.在等差数列{an}中,若a2+a6+a10+a14=20, 则a8=( )
(A)10 (B)5 (C)2.5 (D)1.25
9.在正数等比数列{an}中,若a1+a2+a3=1,a7+a8+a9=4,则此等比数列的前15项的和为( )
(A)31 (B)32 (C)30 (D)33
10.设数列{an}的前几项和Sn=n2+n+1,则数{an}是( )
(A)等差数列 (B)等比数列
(C)从第二项起是等比数列 (D)从第二项起是等差数列
11.函数y=a- 的反函数是( )

(A)y=(x-a)2-a (x a) (B)y=(x-a)2+a (x a)
(C)y=(x-a)2-a (x ) (D)y=(x-a)2+a (x )
12.数列{an}的通项公式an= ,则其前n项和Sn=( )。
(A) (B) (C) (D)
二、填空题(每小题4分,共16分)
13.求和1 +5 +…+(2n-1) = 。
14.函数y=ax+b(a>0且a )的图象经过点(1,7),其反函数的图象经过点(4,0),则ab=

15.函数y=log (log )的定义域为
16.定义运算法则如下:
a 则M+N=
三、解答题(本大题共48分)
17.(1)数列{a�0�1n}满足
(2)数列{a�0�1n}满足
(3)数列{an}满足,a1=1,记数列{an}的前n项和为Sn,当 时,满足 .求Sn






18.已知函数f(x)=loga .
(1)求f(x)的定义域;
(2)判断并证明f(x)的奇偶性。(本题10分)





19.北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社。在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个推主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?(本题10分)



20.设有两个集合A={x },B={x },若A B=B,求a的取值范围。(本题10分)





21.(本小题满分12分)
已知等差数列{an}满足 数列{bn}满足
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设cn=anbn,Sn为数列{c�0�1n}的前n项,求Sn。


高一数学选择题

首先我们知道根号下的数一定是大于等于零的【摘要】高一数学选择题【提问】【提问】[悠闲]第三题【提问】首先我们知道根号下的数一定是大于等于零的【回答】因为根号下是一个对数【回答】且底为二【回答】那么这个底二的对数一定是大于等于零的【回答】我们知道底二的对数是单调递增的【回答】X等于一时它等于零【回答】所以定义域为X大于等于一【回答】并且1是可以取的【回答】所以应该选择第一个答案【回答】一到正无穷【回答】[1,+∞)【回答】第二题【提问】刚才问错了【提问】我们知道第四象限的角正弦小于零【回答】所以A错误【回答】余弦等于零的角,不只二分之派【回答】所以B错误【回答】我们知道第三象限平分线tanX等于一【回答】所以C错误【回答】所以只能选最后一个【回答】40块钱可以做20道题吗【提问】全是选择题吗【回答】还有6道大题【提问】你要多少时间之内做完【回答】我这样跟你说吧【回答】40这20道题能做的我都给你做了【回答】那如果做不来的话,那我没办法【回答】

高一年级上学期数学期末考试试题

【 #高一# 导语】不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要让追求之舟停泊在幻想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。 高一频道为正在拼搏的你整理了《高一年级上学期数学期末考试试题》,希望对你有帮助!

  【一】

  第Ⅰ卷

  一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  1.设集合,则

  (A)(B)(C)(D)

  2.在空间内,可以确定一个平面的条件是

  (A)三条直线,它们两两相交,但不交于同一点

  (B)三条直线,其中的一条与另外两条直线分别相交

  (C)三个点(D)两两相交的三条直线

  3.已知集合{正方体},{长方体},{正四棱柱},{直平行六面体},则

  (A)(B)

  (C)(D)它们之间不都存在包含关系

  4.已知直线经过点,,则该直线的倾斜角为

  (A)(B)(C)(D)

  5.函数的定义域为

  (A)(B)(C)(D)

  6.已知三点在同一直线上,则实数的值是

  (A)(B)(C)(D)不确定

  7.已知,且,则等于

  (A)(B)(C)(D)

  8.直线通过第二、三、四象限,则系数需满足条件

  (A)(B)(C)同号(D)

  9.函数与的图象如下左图,则函数的图象可能是

  (A)经过定点的直线都可以用方程表示

  (B)经过任意两个不同的点的直线都可以用方程

  表示

  (C)不经过原点的直线都可以用方程表示

  (D)经过点的直线都可以用方程表示

  11.已知正三棱锥中,,且两两垂直,则该三棱锥外接球的表面积为

  (A)(B)

  (C)(D)

  12.如图,三棱柱中,是棱的中点,平面分此棱柱为上下两部分,则这上下两部分体积的比为

  (A)(B)

  (C)(D)

  第Ⅱ卷

  二.填空题:本大题共4小题,每小题5分,共20分.

  13.比较大小:(在空格处填上“”或“”号).

  14.设、是两条不同的直线,、是两个不同的平面.给出下列四个命题:

  ①若,,则;②若,,则;

  ③若//,//,则//;④若,则.

  则正确的命题为.(填写命题的序号)

  15.无论实数()取何值,直线恒过定点.

  16.如图,网格纸上小正方形的边长为,用粗线画出了某多面体的三视图,则该多面体最长的棱长为.

  三.解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.

  17.(本小题满分10分)

  求函数,的值和最小值.

  18.(本小题满分12分)

  若非空集合,集合,且,求实数.的取值.

  19.(本小题满分12分)

  如图,中,分别为的中点,

  用坐标法证明:

  20.(本小题满分12分)

  如图所示,已知空间四边形,分别是边的中点,分别是边上的点,且,

  求证:

  (Ⅰ)四边形为梯形;

  (Ⅱ)直线交于一点.

  21.(本小题满分12分)

  如图,在四面体中,,⊥,且分别是的中点,

  求证:

  (Ⅰ)直线∥面;

  (Ⅱ)面⊥面.

  22.(本小题满分12分)

  如图,直三棱柱中,,分别是,的中点.

  (Ⅰ)证明:平面;

  (Ⅱ)设,,求三棱锥的体积.

  【答案】

  一.选择题

  DACBDBACABCB

  二.填空题

  13.14.②④15.16.

  三.解答题

  17.

  解:设,因为,所以

  则,当时,取最小值,当时,取值.

  18.

  解:

  (1)当时,有,即;

  (2)当时,有,即;

  (3)当时,有,即.

  19.

  解:以为原点,为轴建立平面直角坐标系如图所示:

  设,则,于是

  所以

  (Ⅱ)由(Ⅰ)可得相交于一点,因为面,面,

  面面,所以,所以直线交于一点.

  21.证明:(Ⅰ)分别是的中点,所以,又面,面,所以直线∥面;

  (Ⅱ)⊥,所以⊥,又,所以⊥,且,所以⊥面,又面,所以面⊥面.

  22.证明:(Ⅰ)连接交于,可得,又面,面,所以平面;

  【二】

  一、选择题:(本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.)

  1.若直线x=1的倾斜角为α,则α=()

  A.0°B.45°C.90°D.不存在

  2.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为

  A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台

  C.三棱柱、四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台

  3.过点P(a,5)作圆(x+2)2+(y-1)2=4的切线,切线长为,则a等于()

  A.-1B.-2C.-3D.0

  4.已知是两条不同直线,是三个不同平面,下列命题中正确的是()

  A.B.

  C.D.

  5.若直线与圆有公共点,则()

  A.B.C.D.

  6.若直线l1:ax+(1-a)y=3,与l2:(a-1)x+(2a+3)y=2互相垂直,则a的值为()

  A.-3B.1C.0或-D.1或-3

  7.已知满足,则直线*定点()

  A.B.C.D.

  8.各顶点都在一个球面上的正四棱柱(底面是正方形,侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()

  A.32B.24C.20D.16

  9.过点且在两坐标轴上截距的绝对值相等的直线有()

  A.1条B.2条C.3条D.4条

  10.直角梯形的一个内角为45°,下底长为上底长的,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+),则旋转体的体积为()

  A.2B.C.D.

  11.将一张画有直角坐标系的图纸折叠一次,使得点与点B(4,0)重合.若此时点与点重合,则的值为()

  A.B.C.D.

  12.如图,动点在正方体的对角线上,过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()

  选择题答题卡

  题号123456789101112

  答案

  二、填空题:(本大题共4小题,每小题4分,共16分。).

  13.空间直角坐标系中点关于原点的对成点为B,则是.

  14.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,若AC=BD=a,且AC与BD所成的角为60o,则四边形EFGH的面积是.

  15.已知两圆和相交于两点,则公共弦所在直线的直线方程是.

  16.已知异面直线、所成的角为,则过空间一点P且与、所成的角都为的

  直线有条.

  三、解答题:(本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.)

  17.(本题满分10分)

  已知空间四边形ABCD的各边及对角线都相等,AC和平面BCD所成角的余弦值.

  18.(本题满分12分)

  已知直线经过点,且斜率为.

  (Ⅰ)求直线的方程;

  (Ⅱ)求与直线切于点(2,2),圆心在直线上的圆的方程.

  19.(本题满分12分)

  已知四棱锥P-ABCD,底面ABCD是的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

  (Ⅰ)证明:DN//平面PMB;

  (Ⅱ)证明:平面PMB平面PAD;

  20.(本题满分14分)

  求半径为4,与圆x2+y2―4x―2y―4=0相切,且和直线y=0相切的圆的方程.

  兰州一中2014-2015-1学期高一年级期末数学答案

  一、选择题:(本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.)

  题号123456789101112

  答案CCBDADCBCDAB

  二、填空题:(本大题共4小题,每小题4分,共16分。).

  13.214.15.16.3

  三、解答题:(本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.)

  17.(本题满分10分)

  已知空间四边形ABCD的各边及对角线都相等,AC和平面BCD所成角的余弦值.

  解:过点A作AO垂直于平面BCD,垂足为O,

  连结CO,则CO是AC在平面BCD上的射影,

  所以就是AC和平面BCD所成角……………..2分

  设空间四边形ABCD的边长为,连结OB,OD,由AB=AC=AD,易知全等,

  所以OB=OC=OD,即O是的中心………………..4分

  在中,可以计算出……………………………..7分

  在中,,

  ,即AC和平面BCD所成角的余弦值为………10分

  18.(本题满分12分)

  已知直线经过点,且斜率为.

  (Ⅰ)求直线的方程;

  (Ⅱ)求与直线切于点(2,2),圆心在直线上的圆的方程.

  解:(Ⅰ)由直线方程的点斜式,得

  整理,得所求直线方程为……………4分

  (Ⅱ)过点(2,2)与垂直的直线方程为,

  由得圆心为(5,6),

  ∴半径,

  故所求圆的方程为.………..……12分

  19.(本题满分12分)

  已知四棱锥P-ABCD,底面ABCD是的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

  (Ⅰ)证明:DN//平面PMB;

  (Ⅱ)证明:平面PMB平面PAD;

  解:(Ⅰ)证明:取PB中点Q,连结MQ、NQ,因为

  M、N分别是棱AD、PC中点,所以

  QN//BC//MD,且QN=MD,于是DN//MQ.

  .

  …………………6分

  (Ⅱ)

  又因为底面ABCD是的菱形,且M为中点,

  所以.又所以.

  ………………12分

  20.(本题满分14分)求半径为4,与圆x2+y2―4x―2y―4=0相切,且和直线y=0相切的圆的方程.

  解:圆x2+y2―4x―2y―4=0的圆心为O2(2,1),半径为3,

  由于所求圆与直线y=0相切,且半径为4,

  则可设圆心坐标为O1(a,4),O1(a,-4).……………………………………4分

  ①若两圆内切,则|O1O2|=4-3=1.

  即(a-2)2+(4-1)2=12,或(a-2)2+(-4-1)2=12.

  显然两方程都无解.……………………………………………………………….9分

  ②若两圆外切,则|O1O2|=4+3=7.

  即(a-2)2+(4-1)2=72,或(a-2)2+(-4-1)2=72.


上一篇:高一寒假作业

下一篇:高一英语听力mp3