九年级上册数学补充习题

时间:2024-04-19 13:40:05编辑:coo君

九年级上册数学试卷与答案

一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)
1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P
A. 在⊙O外 B. 在⊙O上 C. 在⊙O内 D. 不能确定
2. 已知△ABC中,∠C=90°,AC=6,BC=8, 则cosB的值是
A.0.6 B.0.75 C.0.8 D.
3.如图,△ABC中,点 M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是
A . B .
C. D.
4. 下列图形中,既是中心对称图形又是轴对称图形的是

A. B. C. D.
5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2= cm,则⊙O1和⊙O2的位置关系是
A.外离 B.外切 C.内切 D.相交
6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是
A. a>0, b>0, c>0 B. a>0, b>0, c<0
C. a>0, b0 D. a>0, b<0, c<0
7.下列命题中,正确的是
A.平面上三个点确定一个圆 B.等弧所对的圆周角相等
C.平分弦的直径垂直于这条弦 D.与某圆一条半径垂直的直线是该圆的切线
8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是
A.y=-(x+3)2-2 B.y=-(x+1)2-1
C.y=-x2+x-5 D.前三个答案都不正确
二、填空题(本题共16分, 每小题4分)
9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .
10.在反比例函数y= 中,当x>0时,y 随 x的增大而增大,则k 的取值范围是_________.
11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.
12.已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为 _________ cm.

三、解答题(本题共30分, 每小题5分)
13. 计算:cos245°-2tan45°+tan30°- sin60°.
14. 已知正方形MNPQ内接于△ABC(如图所示),若△ABC的面积为9cm2,BC=6cm,求该正方形的边长.

15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB的长为12米,调整后的楼梯所占地面CD有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)

16.已知:△ABC中,∠A是锐角,b、c分别是∠B、∠C的对边.
求证:△ABC的面积S△ABC= bcsinA.

17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD于点G,延长AG交BC于点F. 求证:AB2=BF•BC.

18. 已知二次函数 y=ax2-x+ 的图象经过点(-3, 1).
(1)求 a 的值;
(2)判断此函数的图象与x轴是否相交?如果相交,请求出交点坐标;
(3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)

四、解答题(本题共20分, 每小题5分)
19. 如图,在由小正方形组成的12×10的网格中,点O、M和四边形ABCD的顶点都在格点上.
(1)画出与四边形ABCD关于直线CD对称的图形;
(2)平移四边形ABCD,使其顶点B与点M重合,画出平移后的图形;
(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.
20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.
(1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;
(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)
21. 已知函数y1=- x2 和反比例函数y2的图象有一个交点是 A( ,-1).
(1)求函数y2的解析式;
(2)在同一直角坐标系中,画出函数y1和y2的图象草图;
(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y1<y2 ?

22. 工厂有一批长3dm、宽2dm的矩形铁片,为了利用这批材料,在每一块上裁下一个的圆铁片⊙O1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O2.
(1)求⊙O1、⊙O2的半径r1、r2的长;
(2)能否在剩余的铁片上再裁出一个与⊙O2 同样大小的圆铁片?为什么?

五、解答题(本题共22分, 第23、24题各7分,第25题8分)
23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点M、N,在AC的延长线上取点P,使∠CBP= ∠A.
(1)判断直线BP与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为1,tan∠CBP=0.5,求BC和BP的长.
24. 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.
(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;
(2)当AM为何值时,四边形AMND的面积?值是多少?
(3)点M能是AB边上任意一点吗?请求出AM的取值范围.
25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).
(1)求这个二次函数的解析式;
(2)求△ABC的外接圆半径r;
(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

一、 ACCB DABB
二、 9. :1  10. k< -1 11. ,   12.
三、13. 原式= -2+ - ×
= -2 + - ……………………………………4分
= -3+ ……………………………………………………5分
14. 作AE⊥BC于E,交MQ于F.
由题意, BC×AE=9cm2 , BC=6cm.
∴AE=3cm. ……………………………1分
设MQ= xcm,
∵MQ∥BC,∴△AMQ∽△ABC. ……………………2分
∴ . ……………………3分
又∵EF=MN=MQ,∴AF=3-x.
∴ . ……………………………………4分
解得 x=2.
答:正方形的边长是2cm. …………………………5分
15. 由题意,在Rt△ABC中,AC= AB=6(米), …………………1分
又∵在Rt△ACD中,∠D=25°, =tan∠D, ……………………………3分
∴CD= ≈ ≈12.8(米).
答:调整后的楼梯所占地面CD长约为12.8米. ……………………5分
16. 证明:作CD⊥AB于D,则S△ABC= AB×CD. ………………2分
∵ 不论点D落在射线AB的什么位置,
在Rt△ACD中,都有CD=ACsinA. …………………4分
又∵AC=b,AB=c,
∴ S△ABC= AB×ACsinA
= bcsinA. …………5分
17. 证明:延长AF,交⊙O于H.
∵直径BD⊥AH,∴AB⌒ = BH⌒ . ……………………2分
∴∠C=∠BAF. ………………………3分
在△ABF和△CBA中,
∵∠BAF =∠C,∠ABF=∠CBA,
∴△ABF∽△CBA. …………………………………………4分
∴ ,即AB2=BF×BC. …………………………………………5分
证明2:连结AD,
∵BD是直径,∴∠BAG+∠DAG=90°. ……………………1分
∵AG⊥BD,∴∠DAG+∠D=90°.
∴∠BAF =∠BAG =∠D. ……………………2分
又∵∠C =∠D,
∴∠BAF=∠C. ………………………3分
……
18. ⑴把点(-3,1)代入,
得 9a+3+ =1,
∴a= - .
⑵ 相交 ……………………………………………2分
由 - x2-x+ =0, ……………………………3分
得 x= - 1± .
∴ 交点坐标是(- 1± ,0). ……………………………4分
⑶ 酌情给分 ……………………………………………5分
19. 给第⑴小题分配1分,第⑵、⑶小题各分配2分.
20. ⑴ 0.4 ……………………………………………2分
⑵ 0.6 ……………………………………………4分
列表(或画树状图)正确 ……………………………………5分
21. ⑴把点A( ,- 1)代入y1= - ,得 –1= - ,
∴ a=3. ……………………………………………1分
设y2= ,把点A( ,- 1)代入,得 k=– ,
∴ y2=– . ……………………………………2分
⑵画图; ……………………………………3分

⑶由图象知:当x 时,y1<y2. ……………………………………5分 22. ⑴如图,矩形ABCD中,AB= 2r1=2dm,即r1=1dm. ………………………………1分
BC=3dm,⊙O2应与⊙O1及BC、CD都相切.
连结O1 O2,过O1作直线O1E∥AB,过O2作直线O2E∥BC,则O1E⊥O2E.
在Rt△O1 O2E中,O1 O2=r1+ r2,O1E= r1– r2,O2E=BC–(r1+ r2).
由 O1 O22= O1E2+ O2E2,
即(1+ r2)2 = (1– r2)2+(2– r2)2.
解得,r2= 4±2 . 又∵r2<2,
∴r1=1dm, r2=(4–2 )dm. ………………3分

⑵不能. …………………………………………4分
∵r2=(4–2 )> 4–2×1.75= (dm),
即r2> dm.,又∵CD=2dm,
∴CD<4 r2,故不能再裁出所要求的圆铁片. …………………………………5分
23. ⑴相切. …………………………………………1分
证明:连结AN,
∵AB是直径,
∴∠ANB=90°.
∵AB=AC,
∴∠BAN= ∠A=∠CBP.
又∵∠BAN+∠ABN=180°-∠ANB= 90°,
∴∠CBP+∠ABN=90°,即AB⊥BP.
∵AB是⊙O的直径,
∴直线BP与⊙O相切. …………………………………………3分
⑵∵在Rt△ABN中,AB=2,tan∠BAN= tan∠CBP=0.5,
可求得,BN= ,∴BC= . …………………………………………4分
作CD⊥BP于D,则CD∥AB, .
在Rt△BCD中,易求得CD= ,BD= . …………………………………5分
代入上式,得 = .
∴CP= . …………………………………………6分
∴DP= .
∴BP=BD+DP= + = . …………………………………………7分
24. ⑴依题意,点B和E关于MN对称,则ME=MB=4-AM.
再由AM2+AE2=ME2=(4-AM)2,得AM=2- . ……………………1分
作MF⊥DN于F,则MF=AB,且∠BMF=90°.
∵MN⊥BE,∴∠ABE= 90°-∠BMN.
又∵∠FMN =∠BMF -∠BMN=90°-∠BMN,
∴∠FMN=∠ABE.
∴Rt△FMN≌Rt△ABE.
∴FN=AE=x,DN=DF+FN=AM+x=2- +x. ………………………2分
∴S= (AM+DN)×AD
=(2- + )×4
= - +2x+8. ……………………………3分
其中,0≤x<4. ………………………………4分
⑵∵S= - +2x+8= - (x-2)2+10,
∴当x=2时,S=10; …………………………………………5分
此时,AM=2- ×22=1.5 ………………………………………6分
答:当AM=1.5时,四边形AMND的面积,为10.
⑶不能,0<AM≤2. …………………………………………7分
25. ⑴∵△AOB∽△BOC(相似比不为1),
∴ . 又∵OA=4, OB=3,
∴OC=32× = . ∴点C( , 0). …………………1分
设图象经过A、B、C三点的函数解析式是y=ax2+bx+c,
则c= -3,且 …………………2分

解得,a= , b= .
∴这个函数的解析式是y = x2+ x-3. …………………3分
⑵∵△AOB∽△BOC(相似比不为1),
∴∠BAO=∠CBO.
又∵∠ABO+ ∠BAO =90°,
∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分
∴AC是△ABC外接圆的直径.
∴ r = AC= ×[ -(-4)]= . ………………5分
⑶∵点N在以BM为直径的圆上,
∴ ∠MNB=90°. ……………………6分
①. 当AN=ON时,点N在OA的中垂线上,
∴点N1是AB的中点,M1是AC的中点.
∴AM1= r = ,点M1(- , 0),即m1= - . ………………7分
②. 当AN=OA时,Rt△AM2N2≌Rt△ABO,
∴AM2=AB=5,点M2(1, 0),即m2=1.
③. 当ON=OA时,点N显然不能在线段AB上.
综上,符合题意的点M(m,0)存在,有两解:
m= - ,或1. ……………………8分


求一套人教版九年级数学21 22章综合测试题及答案

二次根式及一元二次方程综合测试题
(150分 120分钟)

一、选择题(每小题3分,共36分),请把每小题正确的答案填在本页表格中.
1.如果 有意义,那么 的取值范围是( )
A. B. C. D.
2. 的相反数是( )
A. B. C. D.
3.二次根式 的值等于( )
A.-2 B.±2 C.2 D.4
4.一元二次方程的 左边配成完全平方式后所得的方程为 ( )
A. B. C. D.以上答案都不对
5.下列计算错误的是 ( )
A. B. C. D.
6.若 是关于x的一元二次方程,则( )
A.a=1 B.a≠1 C.a≠-1 D.a≠0且b≠0
7. 是整数,则正整数 的最小值是( )
A.4; B.5; C.6; D.7
8.下列根式中属最简二次根式的是(  )
A. B. C. D.
题号123456789 101112
答案

9.下列方程,是一元二次方程的是( )
①3x2+x=20, ②2x2-3xy+4=0, ③ , ④ x2= , ⑤
A.①② B.①②④⑤ C.①③④ D.①④⑤
10.(2008湖北)下列方程中,有两个不等实数根的是( )
A. B.
C. D.
11.若 ,则( )
A.b>3 B.b<3 C.b≥3 D.b≤3
12.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点
沿纸箱爬到B点,那么它所行的最短路线的长是( )
A.9 B.10 C. D.
二、填空题(每小题3分,共30分)请把每小题正确的答案填在下面表格中.
题号12345
答案



题号678910
答案



1.方程 的二次项系数是 ,一次项系数是 ,常数项是______.
2.已知 ,则代数式 的值是 .
3.如果 ,那么 的算术平方根是 .
4.若 ,则m-n的值为 .
5.
6.计算: = .
7.比较大小: (填“>”或“<”=)
8.如果最简二次根式 与 是同类根式,那么a = .
9.若x<2,化简 的正确结果是 ___.
10.观察下列各式:①、 ,②、 ③、 ,…请写出第⑦个式子: ,用含n (n≥1)的式子写出你猜想的规律: 。
三、计算或化简(每小题5分,共20分)
⑴ ⑵



⑶ ⑷







四、解下列方程(每小题5分,共30分)
⑴ ⑵






⑶ ⑷








(5) (6)







四、解答题(第1、2、3题每小题8分,第4题10分,共34分)
1.已知: ,求 的值.



2.小明在微机上设计了一长方形图片,已知长方形的长是 cm,宽是 cm,他又想设计一个面积与其相等的圆,小明的想法能够实现吗?如果能,请你为小明提出设计方案.(要求写出有关计算过程)




3.某种植物的主干长出若干数目的支干,每个支干又长出与主干同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?(列方程解应用题)





4.请用两种方法解答下列问题.
海伦—秦九韶公式:如果一个三角形三边长分别为 ,b,c,设 ,则三角形的面积为 ,用公式计算下
图三角形的面积。请你想一想是否有其他方法吗?试试看。
(如作最长边上的高,结合勾股定理。)(10分)


九年级数学上册答案

你好,雨过丶彩虹:

我觉得你写错了吧?应该是九年级数学下册吧?九年级数学上册根本就找不到这些题目?
以下是人教版九年级数学下册你所说的题目的答案:


P31 1—7
1、根据题意,得AE=4-x,EG=4+x
∴y=(4-x)(4+x)=-x²+16(0<x<4)
2、根据题意,得第2年的销售量为5000(1+x)台,则第3年的销售量为5000(1+x)²台,即y=5000(x+1)²
3、D
4、图略
(1)y=x²+2x-3,开口方向向上,对称轴x=-1,顶点坐标(-1,-4)
(2)y=1+6x-x²,开口方向向下,对称轴x=3,顶点坐标(3,10)
(3)y=1/2x²+2x+1,开口方向向上,对称轴x=-2,顶点坐标(-2,-1)
(4)y=-1/4x²+x-4,开口方向向下,对称轴x=2,顶点坐标(2,-3)
5、∵s=15t-6t²=-6(t-5/4)²+75/8
∴当t=5/4时,s有最大值75/8
∴汽车刹车后到停下来前进了75/8m
6、(1)y=7/8x²+2x+1/8
(2)y=20/3x²-20/3x-5
7、设长为x m,则宽为(30-x)/2 m
∴菜园的面积可表示为y=x(15-x/2)=-(x²/2)+15x=-1/2(x-15)²+112.5
当x=15时,y有最大值112.5
∴矩形长为15m、宽为7.5m时,菜园面积最大,最大面积为112.5m²


P32 8—9
8、当s=85时,85=1.8t+0.064t²,则t=25,故他通过这段山坡需要25s
9、设矩形的长为x cm,则宽为(36-2x)/2=(18-x)cm
绕一边旋转后所成圆柱的侧面积y=2πx ×(18-x)=-2π(x-9)²+162π
∴当x=9时,侧面积最大,即当矩形长、宽都为9cm时,圆柱的侧面积最大


P70 1—6
1、∵相似多边形的各对应角相等,各对应边的比相等
∴∠E=∠K,∠G=∠M,∠F=∠360°-(∠E+∠H+∠G),∠F=∠N
∴∠E=67°,∠G=107°,∠N=360°-(67°+107°+143°)=43°
∵x/35=6/y=10/z=4/10,∴x=14,y=15,x=25
2、∵相似三角形对应边的比相等,设△DEF另两条边分别为x,y,周长为C
∴5/15=12/x=13/y,C=15+x+y
∴x=36,y=39,C=90
3、(1)∵∠1=∠2,∠G=∠I=90°,∴△FGH∽△JIH,∴3/6=x/8=5/y,∴x=4,y=10
(2)∵∠FHG+∠GHJ=∠KHJ+∠KHF,∠KHF=∠GHJ=90°,∴∠GHF=∠KHJ
又∵GH/KH=FH/HJ=3/2,∴△GFH∽△KHJ,∴x=124°,y/22=3/2,∴y=33
4、∵面积比等于边长比的平方
∴广告面积变为原来的9倍,即要付广告费180×9=1620(元)
5、图略
先选定位似中心O,然后根据位似图形的特点画图
6、根据位似的性质可知,黑板上的字与教科书上的字的相似比为6:0.3=20:1
∴设黑板上的字长为x cm、宽为y cm时,才能使学生看时与教科书上的字感觉相同,则
x/0.4=y/0.35=20/1,x=8,y=7
∴黑板上的字大小应为7cm×8cm


P71 7—10
7、∵OA/OC=OB/OD,∠DOC=∠AOB,∴△DOC∽△AOB
∴CD/AB=OC/OA,即b/AB=1/n,∴AB=nb,∴x=1/2(a-nb)
8、∵C为圆周上一点,∴∠ACB=90°
∴∠ACP+∠PCB=90°
又∵CD⊥AB,∴∠PCB+∠PBC=90°
∴∠ACP=∠BPC
又∵∠APC=∠BPC=90°
∴△APC∽△CPB,∴PA/PC=PC/PB,∴PC²=PA×PB
9、过程略,球能碰到墙面离地5.4m高的地方
10、35mm=0.035m,50mm=0.05m,70mm=0.07m,由题意知,△XYL∽△ABL
当焦距为50mm时,0.035m/AB=0.07m/5m
∴AB=2.5m
故焦距为70mm时,能拍摄5m处的景物有2.5m宽


P72 11—12
11、∵DB‖AC,∴△DOB∽△COA,∴OD/OC=OB/OA,∴OA×OD=OB×OC
12、设阴影部分的宽为x cm,则阴影部分的长为6cm
∵原来的矩形与阴影部分相似
∴10/6=6/x,∴x=3.6
∴留下的矩形面积为S=3.6×6=21.6cm²


P97 1—9
1、∵在Rt△ABC中,∠C=90°,a=2,sinA=1/3,∴c=a/sinA=2/(1/3)=6
∴b=√6²-2²=4√2
∴cosA=b/c=(4√2)/6=(2√2)/3,tanA=a/b=2/(4√2)=(√2)/4
2、∵∠C=90°,cosA=(√3)/2,∴AC/AB=(√3)/2
又∵AC=4√3,∴AB=(4√3)/(√3/2)=8
∴BC=√8²-(4√3)²=4
3、(1)原式=√2×(√2)/2-1=0
(2)原式=√3×(√3/2)+√3-2×(√3/2)²=3/2+√3-2×(3/4)=√3
4、(1)0.54 (2)0.43 (3)7.27 (4)-0.04
5、(1)A=40.08° (2)A=69.12° (3)A=88.38° (4)A=35.26°
6、
(1)若顶角为30°,腰为2√3,则AB=AC=2√3,则BC=2×AC×cos75°=4√3 cos75°
∴△ABC的周长为AB+AC+BC≈8.6
(2)若顶角为30°,底边为2√3,则BC=2√3,则AB=AC=(√3)/cos75°
∴△ABC的周长为AB+AC+BC≈16.8
(3)若顶角为30°,腰为2√3,则AB=AC=2√3,BC=2ABcos30°=4√3×(√3/2)=6
∴△ABC的周长为AB+AC+BC=6+4√3
(4)若底角为30°,底边为2√3,则BC=2√3,则AB=(√3)/(√3/2)=2=AC
∴△ABC的周长为AB+AC+BC=4+2√3
7、过程略,船离海岸42/tan33°≈65m远
8、由题意得tan43°24′=AB/BC,∴AB=BC×tan43°24′≈30.8m
过点D作DE⊥AB于点E,∵tan35°12′=AE/DE,AE=DE×tan35°12′≈23.0m
∴DC=AB-AE=30.8-23.0=7.8m,故这两个建筑物的高度分别为30.8m,7.8m
9、作CG⊥CD,与BA延长线交于点G;作BF⊥AB,与CD延长线于F;过D作DE⊥AB交于E
∵∠EDB=30°,∴∠DBF=30°,AG=CG=BF=5cm,∴BD=BF/cos30°=10/1.732≈5.8m
DF=5/√3≈2.9,∵∠GCA=45°,∴AC=5/(√2/2)=5√2≈7.3m
∴AB=CF-AG=3.4+5/√3-5=1.3m


P98 10—13
10、(1)5.8米(2)66°,可以安全使用这个梯子
11、(1)△AFB∽△FEC
(2)设CE=3x,CF=4x,则AB=8x,BF=6x,AF=10x,在Rt△AEF中,AF²+EF²=AE²
∴(5x)²+(10x)²=(5√5)²,解得x=1,则周长是2(10x+8x)=36cm
12、已知AB,BC及其夹角∠B,能求出平行四边形ABCD的面积S
S=AB×BC×sin∠B
13、
(1)内接正n边形的周长为:2nRsin(180°/n)
内接正n边形的面积为:nR²sin(180°/n)cos(180°/n)
(2)
内接正n边形 正六边形 正十二边形 正二十四边形 ……
周长 6R 6.21R 6.26R ……
面积 2.6R² 3R² 3.1R² ……


P125 1—3
1、图中三视图对应的直观图是(3)
2、图略(自己画吧,这里操作不方便)
3、底层有三个正方体,第二层有2个正方体,且与最底层的正方体错位1/2,最上层有一个正方体,放在第二层右边的正方体上


P126 4—7
4、图略
5、正六棱柱
6、三视图略
物体为一底面半径为5、高为20的圆柱体
∴体积为V=π×5²×20=500π
表面积为S=2π×5×20+2π×5²=250π
7、展开图略
表面积为S=π×(5√2)²×(1/√2)+20×2π×5+π×5²=25(√2 +9)π


某商场销售一批进价为2500元的电冰箱,当销售价定为3500元时,平均每天能售出8台,电冰箱销售价

解答此题基本的数量关系是:售价-进价=利润,设出定价,求得每一台的利润,进一步求总利润,建立方程即可解答.解答:解:设每台优惠价应定为x元,每一台的利润为(x-2500)元,依题意列方程得
(x-2500)[8+ (3500-x)]=(3500-2500)×8×(1+12.5%),
整理得x2-6400x+10200000=0,
解得x1=3000,x2=3400,
为了吸引顾客,定价越低,顾客买得越多,故x=3400元,不合题意,舍去,
答:每台优惠价应定为3000元.


某商场销售一批进价为2500元的电冰箱,当销售价定为3500元时

解答此题基本的数量关系是:售价-进价=利润,设出定价,求得每一台的利润,进一步求总利润,建立方程即可解答.解答:解:设每台优惠价应定为x元,每一台的利润为(x-2500)元,依题意列方程得
(x-2500)[8+ (3500-x)]=(3500-2500)×8×(1+12.5%),
整理得x2-6400x+10200000=0,
解得x1=3000,x2=3400,
为了吸引顾客,定价越低,顾客买得越多,故x=3400元,不合题意,舍去,
答:每台优惠价应定为3000元.


九年级数学上册期末试题

这篇关于《九年级数学上册期末试题》,是 无 特地为大家整理的,希望对大家有所帮助!

一、选择题:(本题有10小题,每小题3分,共30分)

下面每小题给出的四个选项中,只有一个是正确的,不选、多选、错选均不给分.

1.若反比例函数 的图象经过点(-5,2),则 的值为 ( ).

A.10 B.-10 C.-7 D.7

2. 把一块直尺与一块三角板如图放置,若 ,则∠2的度数为( )

A.120° B.135° C.145° D.150°

3.某兴趣小组有6名男生,4名女生,在该小组成员中选取1名学生作为组长,则选取女生为组长的概率是( )

A. B. C. D.

4.如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点

D,AC=6,则OD的长为( )

A.2 B.3 C.3.5 D.4

5.将抛物线 向左平移2个单位后所得到的抛物线为( )

A. B. C. D.

6.小明沿着坡比为1: 的山坡向上走了600m,则他升高了( )

A. m B.200 m C.300 m D.200m

7.如图,圆锥的底面半径 高 则这个圆锥的侧面积是( )

A. B. C. D.

8.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为( )

A.12 m B.13.5 m C.15 m D.16.5 m

9.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是( ).

A. B.若MN与⊙O相切,则

C.l1和l2的距离为2 D.若∠MON=90°,则MN与⊙O相切

10. 如图,AC=BC,点D是以线段AB为 弦的圆弧的中点,AB=4,点E是线段CD上任意一点,点F是线段AB上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是( )

二、填空题:(本题有6小题,每小题4分,共24分)

11.若 ,则 .

12.如图,⊙O的半径为5,弦AB=8,动点M在弦AB上运动(可运动至A和B),设OM=x,则x的取值范围是 .

13.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线 上,点N在直线y=x+3上,设则抛物线y=﹣abx2+(a+b)x的顶点坐标是 .

14.如图,甲楼AB的高度为20米,自甲楼楼顶A处,测得乙楼顶端C处的仰角为450,测得乙楼底部D处的俯角为300,则乙楼CD的高度是 米.

15.如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE= ,CF= ,则正方形ABCD的面积为 .

16.如图所示,点 、 、 在 轴上,且 ,分别过点 、 、 作 轴的平行线,与反比例函数 的图像分别交于点 、 、 ,分别过点 、 、 作 轴的平行线,分别与 轴交于点 、 、 ,连接 、 、 ,那么图中阴影部分的面 积之 和为 .
三、解答题:(本题有8个小题,共66分)

17.(本题6分)计算:

18.(本题6分)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD= ,坡长AB= ,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F= ,求AF的长度.

19.(本题6分)如图,已知一次函数 与反比例函数 的图象交于A、B两点.(1)求A、B两点的坐标;

(2)观察图象,请直接写出一次函数值小于反比例函数值的 的取值范围.

20.(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“2 0元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.

(1)该顾客至少可得到 元购物券,至多可得到 元购物券;

(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

21.(本题8分))如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E, ,延长DB到点F,使 ,连接AF.

(1)证明:△BDE∽△FDA;

(2)试判断直线AF与⊙O的位置关系,并给出证明.

22.(本题10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0

(1)求证:△ACD∽△BAC;

(2)求DC的长;

(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.

23.(本题10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数: ,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.

(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.

(2)当销售单价定为多少元时,每月可获得利润?每月的利润是多少?

(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?

(成本=进价×销售量)

24.(本题12分)抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点 D,当△BDC的面积时,求点P的坐标;

(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(全卷满分120分,考试时间120分钟)

题号 一 二 三 总分

1—10 11—16 17 18 19 20 21 22 23 24

得分

阅卷人

一、选择题:(本题有10小题,每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10

答案 B B A B D C C D B C

二、填空题:(本题有6小题,每小题4分,共24分)

11. 12. 3≤x≤5 13. ( , )

14. 15. 16.

三、解答题:(本题有8个小题,共66分)

17.(本题6分)计算:

解: = ………………3分

= …………………………………………………1分

= …………………………………………………2分

18.(本题6分) 解:过B作BE⊥AD于E,在Rt△ABE中,

∵∠BAE= ,∴∠ABE=

∴AE= AB (m) ………………………………1分

∴BE (m)…………………2分

∴在Rt△BEF中, ∠F= ,

∴EF=BE=30 ………………2分

∴AF=EF-AE=30- (m)

………………………………1分

19.(本题6分)

解:(1)由题意得: 解之得: 或 ……………2分

∴A、B两点坐标分别为A 、B ……2分

(2) 的取值范围是: 或 ………………………………2分

20.(本题8分)

解:(1)10,50。……………………………2分

(2)画树状图:

………………3分

从上图可以看出,共有12种等可能结果,其中大于或等于30元共有8种可能结果,

因此P(不低于30元)= 。 …………………………3分
21.(本题8分,其中,第(1)小题4分,第(2)小题4分)

解:(1)证明:在△BDE和△FDA中,∵FB= BD,AE= ED,∴ 。

又∵∠BDE=∠FDA,∴△BDE∽△FDA。

(2)直线AF与⊙O相切。证明如下:

连接OA,OB,OC ,

∵AB=AC,BO=CO,OA=OA,

∴△OAB≌△OAC(SSS)。

∴∠OAB=∠OAC。

∴AO是等腰三角形ABC顶角∠BAC的平分线。

∴AO⊥BC。

∵△BDE∽FDA,得∠EBD=∠AFD,∴BE∥FA。

∵AO⊥BE,∴AO⊥FA。∴直线AF与⊙O相切。

22.(本题10分,其中,第(1)、(2)小题个3分,第(3)小题4分)

解:(1)∵CD∥AB,∴∠ BAC=∠DCA

又AC⊥BC, ∠ACB=90o ∴∠D=∠ACB= 90o ∴△ACD∽△BAC

(2)

∵△ACD∽△BAC ∴

即 解得:

(3) 过点E作AB的垂线,垂足为G,

∴△ACB∽△EGB ∴ 即 故

= =

故当t= 时,y的最小值为19

23.(本题10分,其中,第(1)小题4分,第(2)、(3)小题各3分)

解:(1)由题意,得:w = (x-20)•y=(x-20)•( ) ,即w (20≤x≤32)

(2)对于函数w 的图像的对称轴是直线 .

又∵a=-10<0,抛物线开口向下.∴当20≤x≤32时,W随着X的增大而增大,

∴当X=32时,W=2160

答:当销售单价定为32元时,每月可获得利润,利润是2160元.
(3)取W=2000得,

解这个方程得:x1 = 30,x2 = 40.

∵a=-10<0,抛物线开口向下.

∴当30≤x≤40时,w≥2000.

∵20≤x≤32

∴当30≤x≤32时,w≥2000.

设每月的成本为P(元),由题意,得:

∵ ,

∴P随x的增大而减小.

∴当x = 32时,P的值最小,P最小值=3600.

答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.

24.(本题12分,每小题4分)

解:(1)由题意得: ,解得: ,

∴抛物线解析式为 ;

(2)令 ,

∴x1= -1,x2=3,即B(3,0),

设直线BC的解析式为y=kx+b′,

∴ ,解得: ,

∴直线BC的解析式为 ,

设P(a,3-a),则D(a,-a2+2a+3),

∴PD=(-a2+2a+3)-(3-a)=-a2+3a,

∴S△BDC=S△PDC+S△PDB



∴当 时,△BDC的面积,此时P( , );

(3)由(1),y=-x2+2x+3=-(x-1)2+4,

∴OF=1,EF=4,OC=3,

过C作CH⊥EF于H点,则CH=EH=1

当M在EF左侧时,

∵∠MNC=90°,

则△MNF∽△NCH,

∴ ,

设FN=n,则NH=3-n,

∴ ,

即n2-3n-m+1=0,

关于n的方程有解,△=(-3)2-4(-m+1)≥0,
得m≥ ,

当M在EF右侧时,Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°,

作EM⊥CE交x轴于点M,则∠FEM=45°,

∵FM=EF=4,

∴OM=5,

即N为点E时,OM=5,

∴m≤5,

综上,m的变化范围为: ≤m≤5.


九年级上册数学期末测试卷及答案

一、选择题:(本大题共10题,每小题3分,满分30分.)
1.下列计算中,正确的是 ………………………………………………………… ( )
A.3+2=5 B.3×2=6 C. 8÷2=4 D.12-3=3
2.三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是…………………………………………………………………………( )
A. 9 B. 11 C. 13 D.11或13
3.下列说法中,正确的是……………………………………………………………( )
A.一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖
B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式
C.一组数据8,8,7,10,6,8,9的众数和中位数都是8
D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小
4.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为………………………………………………………… ( )
A.x(x-10)=200 B.2x+2(x-10)=200
C.x(x+10)=200 D.2x+2(x+10)=200
5.一个圆锥的母线长是底面半径的2倍,则侧面展开图扇形的圆心角是…… ( )
A.60° B.90° C.120° D.180°
6.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为 ……………………( )
A.4cm B.6cm C.8cm D.10cm
7.顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是………………………………………………………………………………… ( )
A.菱形 B.对角线互相垂直的四边形
C.矩形 D.对角线相等的四边形
8.如图,抛物线y=ax2+bx+c交x轴于(-1,0)、(3,0)两点,则下列判断中,错误的是 ……………………………………………… ( )
A.图象的对称轴是直线x=1
B.当x>1时,y随x的增大而减小
C.一元二次方程ax2+bx+c=0的两个根是-1和3
D.当-1<x<3时,y<0

9.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为…… ( )
A. B. C. D.
10.如图,直线y=33x+3与x轴、y轴分别相交于A、B两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左移动,当⊙P与该直线相交时,满足横坐标为整数的点P的个数是………………………………………( )
A.3 B.4 C.5 D.6
二、填空题(本大题共8小题,共11空,每空2分,共22分.)
11.若二次根式2-x在实数范围内有意义,则实数x的取值范围是 .
12.若关于x的方程x2-5x+k=0的一个根是0,则另一个根是 .
13.已知一个矩形的对角线的长为4,它们的夹角是60°,则这个矩形的较短的边长为 ,面积为 .
14.一组数据1,1,x,3,4的平均数为3,则x表示的数为 ________,
这组数据的极差为_______.
15.已知扇形的圆心角为150°,它所对应的弧长20πcm,
则此扇形的半径是_________cm,面积是_________cm2.
16.一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是
“2”和“1(单位:cm),那么该光盘的直径为_________cm.
17.如图,四边形OABC为菱形,点B、C在以点O为圆心的 ⌒EF上,若OA=1cm,∠1=∠2,则 ⌒EF的长为____________cm.
18.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=x23(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB= .
三、解答题(本大题共有9小题,共78分)
19.计算(每小题4分,共8分)
(1)(27-12+45)×13; (2)(2-3)2+18÷3.

20.解方程(每小题4分,共8分)
(1) x2-4x+2=0; (2)2(x-3)=3x(x-3).

21.(本题满分6分)将背面完全相同,正面上分别写有数字1、2、3、4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数,将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差.
(1)请你用画树状图或列表的方法,求这两数差为0的概率;
(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.
22.(本题6分)已知⊙O1经过A(-4,2)、B(-3,3)、C(-1,-1)、O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.
(1)在右边的平面直角坐标系中画出直线l,则直线l与⊙O1的交点坐标为 ;
(2)若⊙O1上存在点P,使得△APD为等腰三角形,则这样的点P有 个,试写出其中一个点P坐标为 .
23.(本题8分)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,过C作CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.

24.(本题10分)如图,AB是⊙O的直径,C、D在⊙O上,连结BC,过D作PF∥AC交AB于E,交⊙O于F,交BC于点G,且∠BPF=∠ADC.
(1)判断直线BP与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为5,AC=2,BE=1,求BP的长.

25.(本题10分)某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.
(1)试求y与x之间的函数关系式.
(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w?每月的毛利润为多少?
(3)若要使某月的毛利润为1800元,售价应定为多少元?

26.(本题10分) 如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x轴与y轴上,D为OA上一点,且CD=AD.
(1)求点D的坐标;
(2)若经过B、C、D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;
(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.

27.(本题12分)如图,抛物线y=49x2-83x-12与x轴交于A、C两点,与y轴交于B点.
(1)求△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动。问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积?求出此时点M的坐标及四边形CBAN面积的值.
初三数学参考答案与评分标准
一、选择题
1.D 2.C 3.C 4.C 5.D 6.B 7.B 8.D 9.B 10.A
二、填空题
11.x≤2 12.5 13.2,43 14.6 5 15.24,240π 16.10 17.2π3 18.3-3
三、解答题
19.(1)原式=9-4+15 ……3分 (2)原式=2-26+3+6 ………2分
=3-2+15 =5-6. ………………4分
=1+15 …………4分
20.方法不作要求,只要计算正确,都给分。
(1)(x-2)2=2 ………………2分 (2)(x-3)(2-3x)=0 ……………2分
x-2=±2 ……………3分 x-3=0或2-3x=0…………3分
x=2±2
∴x1=2+2,x2=2-2.……4分 ∴x1=3,x2=23.………………4分
21.(1)树状图或表格略 …………………………………………………………………2分
P(两数差为0)= 14 ……………………………………………………………………… 3分
(2)P(小明赢)=34,P(小华赢)=14 ,∵P(小明赢)>P(小华赢),∴不公平. ……………………5分
修改游戏规则只要合理就得分 …………………………………………………………6分
22.(1)正确画出直线l………………………………………………………………………2分
(-4,2),(-1,1) …………………………………………………………4分
(2)3;(-3,-1)或(0,2)(写出一个即可;讲评时,三个点都找出) ……6分
23.(1)∵AB∥CD, CE∥AD,∴四边形AECD是平行四边形.………………………2分
∵CE∥AD,∴∠ACE=∠CAD. …………………………………………………3分
∵AC平分∠BAD,∴∠CAE=∠CAD.∴∠ACE=∠CAE,∴AE=CE.
∴四边形AECD是菱形. …………………………………………………………4分
(2)(判断)△ABC是直角三角形. …………………………………………………5分
证法一:∵AE=CE,AE=BE,∴BE=CE,∴∠B=∠BCE, ……………………6分
∵∠B+∠BCA+∠BAC=180º,
∴2∠BCE+2∠ACE=180º,∴∠BCE+∠ACE=90º,即∠ACB=90º. ……………7分
∴△ABC是直角三角形. …………………………………………………………………8分
证法二:连DE,则DE⊥AC,且DE平分AC.…………………………………………6分
设DE交AC于F.又∵E是AB的中点,∴EF∥BC, …………………………………7分
∴BC⊥AC,∴△ABC是直角三角形. …………………………………………………8分
24.(1)BP与⊙O相切. ……………………………………………………………………1分
理由如下:
∵AB是⊙O的直径
∴∠ACB=90即AC⊥BC.…………………………………………………………………2分
∵PF∥AC, ∴∠CAB=∠PEB. ………………………………………………………3分
∵∠ADC=∠ABC, ∠BPF=∠ADC,∴∠ABC=∠BPF.……………………………4分
∴△ABC∽△EPB……………………………………………………………………………5分
∴∠PBE=∠ACB=90°, ∴PB⊥OB.…………………………………………………6分
∴BP与⊙O相切. …………………………………………………………………………7分
(2)∵Rt△ABC中,AC=2,AB=25,∴BC=4.…………………………………………8分
∵△ABC∽△EPB,∴BCAC=BPBE.…………………………………………………………9分
∴42=BP1,∴BP=2. ……………………………………………………………………10分
25.(1)设y=kx+b,把(23,270)、(28,120)代入… …………………………………………1分
解得y=-30x+960 ……… ………… …………………………………………………2分
(2)w=(x-16)(-30x+960) ………………………………………………………………4分
w=-30(x-24)2+1920 ,当x=24时,w有值1920 …………………………………6分
∴销售价格定为24元时,才能使每月的毛利润,毛利润为1920元. … 7分
(3)当w=1800时,即(x-16)(-30x+960)=1800
解得 x1=22<23(舍去),x2=26 (22不舍扣1分) ……………………………… 9分
∴某月的毛利润为1800元,售价应定为26元. ……………………………………10分
26. (1)设OD=x,则AD=CD=8-x …………………………………………………1分
Rt△OCD中,(8-x)2=x2+42 得x=3 …………………………………………2分
∴OD=3
∴D(3,0) ……………………………………………………………………………3分
(2) 由题意知,抛物线的对称轴为直线x=4 …………………………………………4分
∵D(3,0), ∴另一交点E(5,0) ………………………………………………6分
(3)若存在这样的P,则由S梯形=20, 得S△PBC=12•BC•h=20.
∴h=5……………………………………………………………………………………7分
∵B(8,-4), C(0,-4), D(3,0)
∴该抛物线函数关系式为:y=-415x2+3215x-4. …………………………………8分
顶点坐标为(4,415)
∴顶点到BC的距离为4+415=6415<5…………………………………………………9分
∴不存在这样的点P, 使得△PBC的面积等于梯形DCBE的面积.……… ……10分
27.(1)由题意得:A(9,0),B(0,-12) …………………………………………1分
∴OA=9,OB=12,∴AB=15 ……………………………………………………2分
∴S=π•(152)2=2254π. ………………………………………………………………3分
(2)AP=2t,AQ=15-t,易求AC=12,∴0≤t≤6
若△APQ∽△AOB,则APAO=AQAB.∴t=4513. …………………………………………5分
若△AQP∽△AOB,则APAB=AQAO.∴t=7511>6(舍去,不舍扣1分). ……………7分
∴当t=4513时,以A、P、Q为顶点的三角形与△OAB相似.
(3)直线AB的函数关系式为y=43x-12. …………………………………………………8分
设点M的横坐标为x,则M(x,43x-12),N(x,49x2-83x-12).
① 若四边形OMNB为平行四边形,则MN=OB=12
∴(43x-12)-(49x2-83x-12)=12…………………………9分
即x2-9x+27=0
∵△<0,∴此方程无实数根,
∴不存在这样的点M,使得四边形OMNB恰为平行四边形. ………………………10分
②∵S四边形CBNA= S△ACB+ S△ABN=72+ S△ABN
∵S△AOB=54,S△OBN=6x ,S△OAN=12•9•yN=-2x2+12x+54
∴S△ABN=S△OBN+S△OAN-S△AOB=6x+(-2x2+12x+54)-54
=-2x2+18x=-2(x-92)2+812
∴当x=92时,S△ABN 值=812
此时M(92,-6) ………………………………………………………………………11分
S四边形CBNA= 2252 . …………………………………………………………………12分


谁能告诉我九年级上册数学习题24.1的8和9题答案

在回家的途中,还想着一路快乐的点点滴滴,不知不觉地,脸上的笑意难以溶化……这是游记的写法:游记是一种以记述参观访问、旅途见闻为主要内容的文体.一般以描写为主要手段,又常与抒情议论相结合来表达作者独特的感受.如范仲淹的《岳阳楼记》不仅描绘了巴陵胜状的岳阳楼大观,写了满目萧然的霪雨之日和令人心旷神怡、宠辱皆忘的艳阳情景,还抒发了“先天下之忧而忧,后天下之乐而乐”的情怀. 写好游记,要注意以下四点: 一、细心观察,手写心记 游记的写作犹如蜜蜂采花酿蜜,素材主要来源于游览见闻.细心观察,就是要抓住有特色的景观和对表达中心有重要作用的事物.世界上没有完全相同的两片树叶;事物的特色都是在比较中显示出来的.游览过程中我们就是要善于运用比较的方法,捕捉眼前的景物与其他地方的景物有什么不同之处.有些同学只顾热闹或贪玩,常常忽视景点中的人文资料,如神话传说,乡风民俗,名人轶事,诗词典故,碑文楹联等等,结果是丢了西瓜抓芝麻,写起? 自然内容贫乏,索然无味.所以,必要时还必须心记手写,也可以回来后查看有关资料,以保证内容的丰富充实. 二、依据中心,决定取合 旅途见闻的内容丰富多彩,但是不可能什么都写进文章里.下笔前首先要理一理自己的思绪,想一想本次游览的主要感受是什么?确立一个中心,然后决定:哪些内容详写,哪些内容略写,哪些内容不写.题材的取舍,当然首先要选新颖有趣的内容,更要选有个性、有地方特色的材料,特别是上文提到的那些人文资料,不仅能使你的文章主题鲜明,中心突出,而且读起来更有文化内涵,从而使你的文章更有社会价值. 三、紧扣游踪,疏密有致 游记的内容往往多而杂,写出来怎样才能做到清晰而不繁乱呢?最常用和最简便的方法就是:移步换景.即以游踪的变化为线索,随着时间的推移和地点的转换,完整有序地写出重要的游览过程.当然也要避免写成一本流水账或一幅游览路线图.所以,写作中要用浓墨重彩突出重要的点,跳出一般性的过程交代,使整篇文章成为几个主要景点活动的有机组合体.为了使这个组合体结构匀称,我们还要运用一些穿插的技巧,将与景点有关的资料、数据等内容,通过游览者的交谈或引用等方式适时介绍,这样,就可以调整文章的结构,消除看上去有些部分“臃肿肥胖”、有些部分又显得“面黄肌症”的毛病. 四、写好景物,注入感情 古人云:文章是案头的山水,山水是地上的文章.描写名山秀水是游记的重头戏,写好的关键是注入自己的真感情.我国古代众多游记名篇,“案头的山水”绝不仅仅是自然山水的反映.作者游踪所至,美景在目,心有所感,形诸笔墨,往往物中有我,景中见情,不仅写出了山水的蓬勃生机和无穷妙趣,还能含蓄蕴藉.意味隽永地把作者的身世和人生理想表现出来,达到直抒胸臆、情景交融的效果.当然这不是一日两日的功夫,正好说明了好笔头要靠长期反复磨练的道理. 附例文: 游狼山 闻思月/文 我们南通是个依江傍海、景色宜人的花园式城市,狼山更是名闻遐迩.星期日早晨,我们一家三口前往游玩.上午我们先去了啬园,午餐后就直奔狼山. 一路上爸爸告诉我们,狼山古称狼五山、紫琅山,相传有白狼踞其上,所以又叫白狼山.据史籍记载:唐天宝年间,鉴真东渡日本,曾经过此山以避风浪.它位居全国佛教八小名山之首呢! 我们在车上远望狼山,只见一片翠绿,雄伟的宝塔屹立在山顶,十分壮观.不一会儿,到了山脚下,我们没上缆车,沿着花岗岩铺成的台阶向上攀登.山上人来人往,喜气洋洋.山路两旁古木参天,千姿百态,不禁令人暗暗称奇.狼山不高,父亲说才104.8米,面积18公顷,在多山的地方,根本就算不上什么山.但在南通,却是大名鼎鼎.真是应了那句:山不在高,有仙则名;水不在深,有龙则灵. 说笑间,不知不觉我们就登上了山顶.从山上向下俯视,马路四通八达,楼房一幢接一幢,江面上传着几艘豪华的大轮船,码头旁的大吊车犹如长颈鹿玩具,好一片壮观景象. 狼山因为落座在一马平川、沃野千里的江海平原之上,耸立在一望无垠的长江之滨,所以显得特别突兀高大.尤其是它山势陡峭,拔地而起,临江高耸,直插蓝天,气势更加非凡.登上支云塔,仿佛觉得不是站在一座百米小山之上,而是置身于九霄云外了.辽阔的江海平原,从脚下一直伸展到无边的远方;滚滚的万里长江,犹如一条闪光的缎带,从遥远的天际蜿蜒而来,奔腾入海;那海,那长江入口处的大海,更是水天相连,烟波苍茫,好一派江天寥廓、沧海浩瀚的壮丽景象.怪不得宋朝大诗人王安石来此,情不自禁地发出这样的赞叹:“遨游半是江湖里,始觉今朝眼界开”.想起萃景楼前两根石柱上的那副楹联:“长啸一声山鸣谷应,举头四顾海阔天空”.我们的胸怀也顿觉无限宽广!这样的山,怎能不名闻遐迩呢? 狼山之名所以闻名,更因为它和历史文化名人联系在一起.如唐初四杰之一的骆宾王,近代革命先驱、教育家、实业家张謇,就葬在狼山.又如法乳堂内的十八高僧巨幅瓷砖画像,出自南通籍画家范曾之手,同样令人敬仰. 傍晚,回程途中,妈妈感慨地说,一切为中华民族作出杰出贡献的人,人们是永远不会忘记他们的.

上一篇:初三化学课件

下一篇:九年级数学