九年级数学知识点归纳总结
这篇文章我将九年级数学重要知识点做了归纳总结,希望可以帮助同学们系统的复习九年级数学的重要知识点。 有理数 1.定义 有理数为整数(正整数、0、负整数)和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 2.有理数的性质 (1)顺序性 (2)封闭性 (3)稠密性 3.有理数的加法运算法则 (1)同号两数相加,取与加数相同的符号,并把绝对值相加。 (2)异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 (3)互为相反数的两数相加得0。 (4)一个数同0相加仍得这个数。 (5)互为相反数的两个数,可以先相加。 (6)符号相同的数可以先相加。 (7)分母相同的数可以先相加。 (8)几个数相加能得整数的可以先相加。 (9)减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。 二元一次方程组 1.定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。 2.二元一次方程组的解法 (1)代入法 由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。 (2)因式分解法 在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。 (3)配方法 将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。 (4)韦达定理法 通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。 (5)消常数项法 当方程组的两个方程都缺一次项时,可用消去常数项的方法解。 整式 1.整式的乘法: ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。 ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 2.整式的除法: ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。 ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 相似三角形 1.三角分别相等,三边成比例的两个三角形叫做相似三角形。 2.相似三角形的判定 ①定理:两角分别对应相等的两个三角形相似。 ②定理:两边成比例且夹角相等的两个三角形相似。 ③定理:三边成比例的两个三角形相似。 ④定理:一条直角边与斜边成比例的两个直角三角形相似。 根据以上判定定理,可以推出下列结论: 推论①三边对应平行的两个三角形相似。 推论②一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。 3.相似三角形的性质 ①相似三角形的对应角相等,对应边成比例。 ②相似三角形任意对应线段的比等于相似比。 ③相似三角形的面积比等于相似比的平方。
九年级数学知识点归纳总结
只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。 初三第一学期数学知识点 【角的度量与分类】 角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。 角的分类: (1)锐角:小于直角的角叫做锐角 (2)直角:平角的一半叫做直角 (3)钝角:大于直角而小于平角的角 (4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。 (5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。 (6)周角、平角、直角的关系是:l周角=2平角=4直角=360° 【锐角三角函数定义】 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα。 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 初三数学知识点 1.有两条边相等的三角形是等腰三角形。 2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。 角平分线:把一个角平分的射线叫该角的角平分线。 定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点 性质定理:角平分线上的点到该角两边的距离相等 判定定理:到角的两边距离相等的点在该角的角平分线上 标准差与方差 极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。 计算器——求标准差与方差的一般步骤: 1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。 2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。 3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。 4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差; 5.标准差的平方就是方差。 数学初三上册知识点归纳 分式的基本性质与应用: (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变; (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单. 分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解. 最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 分式的乘除法法则:. 分式的乘方:. 负整指数计算法则: (1)公式:a0=1(a≠0),a-n=(a≠0); (2)正整指数的运算法则都可用于负整指数计算; (3)公式:,; (4)公式:(-1)-2=1,(-1)-3=-1. 九年级数学知识点归纳 总结 相关 文章 : ★ 初三数学知识点考点归纳总结 ★ 九年级数学上册重要知识点总结 ★ 初三数学知识点归纳总结 ★ 九年级上册数学知识点归纳整理 ★ 人教版九年级数学知识点归纳 ★ 初三数学知识点归纳人教版 ★ 初中九年级数学知识点总结归纳 ★ 最新初三数学知识点总结大全 ★ 初三中考数学知识点归纳总结 ★ 九年级上册数学知识点归纳
初三所有数学公式整理有哪些?
初三数学公式:1、平方差公式:a²-b²=(a+b)(a-b)。2、完全平方公式:a²+2ab+b²=(a+b)²。3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)。6、扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)。7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。
初中数学公式是什么?
一、长方形的周长=(长+宽)×2=2(a+b)=(a+b)×2二、正方形的周长=边长×4=4a三、圆的周长=圆周率×直径=πd=圆周率×半径×2=2πr四、长方形的面积=长×宽S=ab五、正方形的面积=边长×边长S=a²六、三角形的面积=底×高÷2S=ah÷2七、平行四边形的面积=底×高S=ah八、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2九、直径=半径×2d=2r十、半径=直径÷2r=d÷2十一、圆的面积=圆周率×半径×半径十二、三角形的面积=底×高÷2S=a×h÷2十三、正方形的面积=边长×边长S=a×a十四、长方形的面积=长×宽S=a×b十五、平行四边形的面积=底×高S=a×h十六、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2十七、内角和:三角形的内角和=180度十八、长方体的体积=长×宽×高V=abc十九、长方体(或正方体)的体积=底面积×高V=Sh二十、正方体的体积=棱长×棱长×棱长V=aaa二十一、圆的面积=半径×半径×πS=πr2
九年级数学知识点总结
各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。 初三数学上册知识点归纳 1.数的分类及概念数系表: 说明:分类的原则:1)相称(不重、不漏)2)有标准 2.非负数:正实数与零的统称。(表为:x0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数: ①定义及表示法 ②性质:A.a1/a(a1);B.1/a中,aC.0 4.相反数: ①定义及表示法 ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴: ①定义(三要素) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.绝对值: ①定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 ②│a│0,符号││是非负数的标志; ③数a的绝对值只有一个; ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。 九年级下册数学知识点归纳 一、平行线分线段成比例定理及其推论: 1.定理:三条平行线截两条直线,所得的对应线段成比例。 2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。 二、相似预备定理: 平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。 三、相似三角形: 1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。 2.性质:(1)相似三角形的对应角相等; (2)相似三角形的对应线段(边、高、中线、角平分线)成比例; (3)相似三角形的周长比等于相似比,面积比等于相似比的平方。 说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。 3.判定定理: (1)两角对应相等,两三角形相似; (2)两边对应成比例,且夹角相等,两三角形相似; (3)三边对应成比例,两三角形相似; (4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。 九年级下册数学知识点 圆 ★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。 ☆内容提要☆ 一、圆的基本性质 1.圆的定义(两种) 2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3.“三点定圆”定理 4.垂径定理及其推论 5.“等对等”定理及其推论 6.与圆有关的角:⑴圆心角定义(等对等定理) ⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.切线的性质(重点) 2.切线的判定定理(重点) 3.切线长定理 九年级数学知识点 总结 相关 文章 : ★ 九年级数学上册重要知识点总结 ★ 初三数学知识点考点归纳总结 ★ 人教版九年级数学知识点归纳 ★ 初三数学知识点归纳总结 ★ 九年级上册数学知识点归纳整理 ★ 最新初三数学知识点总结大全 ★ 初三数学知识点归纳人教版 ★ 初中九年级数学知识点总结归纳 ★ 初三数学知识点整理 ★ 初三数学复习知识点总结
初三数学重点知识点总结归纳
初三学习的知识是初中三年学习的汇总,为了方便大家更好地复习数学,以下是我分享给大家的初三数学重点知识点,希望可以帮到你!
初三数学重点知识点
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的 ***
5.圆的内部可以看作是圆心的距离小于半径的点的 ***
6.圆的外部可以看作是圆心的距离大于半径的点的 ***
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 d>R+r
②两圆外切 d=R+r
③.两圆相交 R-rr
④.两圆内切 d=R-rR>r ⑤两圆内含dr
21.定理 相交两圆的连心线垂直平分两圆的公共弦
22.定理 把圆分成nn≥3:
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于n-2×180°/n
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×n-2180°/n=360°化为n-2k-2=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-R-r 外公切线长= d-R+r
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 半圆或直径所对的圆周角是直角;90°的圆周角所 对的弦是直径
35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
初三数学复习技巧
注重课本知识
全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查询一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
注重课堂学习
在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联络,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联络和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
夯实基础知识
在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
注意知识的迁移
课本中的某些例题、习题,并不是孤立的,而是前后联络、密切相关的,其他学科的知识也和数学有着千丝万缕的联络,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联络,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网路和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联络,让我们在深刻理解课本知识的同时,更有效地形成知识网路与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函式图象与横轴的交点座标。
初三数学复习计划
第一阶段:知识梳理形成知识网路
1、第一轮复习的形式,以中考说明为主线,注重基础知识的梳理。
第一轮复习要“过三关”:
1过记忆关。必须做到记牢记准所有的公式、定理等。
2过基本方法关。如,待定系数法求二次函式解析式。
3过基本技能关。如,数形结合的题目,要求能画图能做出。
2、第一轮复习应该注意的几个问题
1必须夯实基础。一般中考试题按易:较易:中:难=4:3:2:1的比例,要求在应用基础知识时能做到熟练、正确和迅速。
2中考有些基础题是课本上、说明上的原题或改造,必须深钻教材与说明,绝不能好高骛远。
3不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,要有针对性的、典型性、层次性、切中要害的强化练习。
4多归纳、多总结。
第二阶段:专题复习
1、第二轮复习的形式,不再以节、章、单元为单位,而是以专题为单位。
在一轮复习的基础上,进行拔高、集中、归类,重点难点热点突出复习,注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
2、第二轮复习应该注意的几个问题
1第二轮复习可对平时遇到的难点、误点设立专题。
2专题的划分要合理,要有代表性,切忌面面俱到;围绕热点、难点、重点,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。
3以题代知识,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。可适当穿插过去的小知识点,以引起记忆。
4专题复习可适当拔高。没有一定的难度,你的能力是很难提高的,提高学习的能力,这是第二轮复习的任务。但不要过于多和难。
第三阶段:综合训练
1、第三轮复习的形式是模拟中考的综合演练,查漏补缺,俗称考前练兵。训练答题技巧、考场心态、临场发挥的能力等。
2、第三轮复习应该注意的几个问题
1模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,要贴近中考模式。
2归集错题,查漏补缺。
3适当的“解放”自己,特别是在时间安排上。但要注意,解放不是放松,后期题量不宜太大,要轻松解题、居高临下解题,能跳出复习的圈子看试题。
4调节生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合。
5心态和信心调整。保持一颗平常心。
第四阶段:查漏补缺
对自己仍然模糊的或已忘记的知识回归课本,进一步巩固和加深,迎接中考。
总之,在初三数学总复习中,发掘教材,夯实基础是根本;共同参与,注重过程是前提;精选习题,提质减负是核心;强化训练,发展能力是目的。只有这样,才能以不变应万变,以一题带一片,达到事半功倍的效果。
1.初三上册数学知识点总结
2.中考数学知识点总结大全
3.初中数学重点知识点
4.初三数学知识点整理
5.初三数学总复习知识点
初三数学知识点总结归纳
只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。 目录 初三新学期数学知识点 初三数学上册知识点归纳 初三数学复习五大方法 初三新学期数学知识点 一、圆的定义 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质 1、圆的对称性 (1)圆是图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O的半径为r,OP=d。 初三数学上册知识点归纳 1.数的分类及概念数系表: 说明:分类的原则:1)相称(不重、不漏)2)有标准 2.非负数:正实数与零的统称。(表为:x0) 性质:若干个非负数的和为0,则每个非负数均为0。 3.倒数: ①定义及表示法 ②性质:A.a1/a(a1);B.1/a中,aC.0 4.相反数: ①定义及表示法 ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。 5.数轴: ①定义(三要素) ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6.奇数、偶数、质数、合数(正整数自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7.绝对值: ①定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 ②│a│0,符号││是非负数的标志; ③数a的绝对值只有一个; ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。 初三数学复习五大方法 一、回归课本,夯实基础,做好预习。 数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。复习课的内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。 二、抓住关键,突出重点,不以题量论英雄 学好数学要做大量的题,但反过来做了大量的题,数学不一定好。“不要以题量论英雄”,题海战术,有时候往往起到事倍功半的效果,因此要提高解题的效率。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,但是要有针对性地做题,突出重点,抓住关键。 复习中,所谓突出重点,主要是指突出教材中的重点知识,突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。数学思想与方法是数学的精髓,是联系数学中各类知识的纽带。要抓住教材中的重点内容,掌握分析方法,从不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。培养正确地把日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。 三、提高复习兴趣,克服“高原现象” 高原现象在数学复习阶段表现得十分明显。平时授新课,新鲜有趣;搞复习,要重复已学的内容,有的同学会觉得单调、枯燥无味,致使成绩提高缓慢,甚至下降。针对这种情况,提醒同学们,一方面要从思想上提高对复习的认识,主动进行复习;另一方面,要以“新”提高复习的积极性。诸如制订新的复习计划;采用灵活的 复习方法 ;抓住新颖有趣的内容和习题,把知识串连起来,使书“由厚变薄”。 四、提高课堂听课效率,多动脑,勤动手 初三的课只有两种形式:复习课和评讲课,到初三所有课都进入复习阶段,通过复习,学生要知道自己哪些知识点掌握的比较好,哪些知识点有待提高,因此在复习课之前一定要有自已的思考,这样听课的目的就明确了。现在学生手中都会有一些复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的旧知识,可进行查漏补缺,以减少听课过程中的困难,自己理解了的东西与老师的讲解进行比较、分析即可提高自己的数学思维;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,事半功倍。此外对于老师讲课中的难点,重点要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。 五、要养成良好的解题习惯 如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学),自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是初三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。 初三数学知识点 总结 归纳相关 文章 : ★ 初三数学知识点考点归纳总结 ★ 初三数学知识点归纳总结 ★ 初三数学知识点归纳人教版 ★ 初三数学知识点上册总结归纳 ★ 最新初三数学知识点总结大全 ★ 初三数学中考复习重点章节知识点归纳 ★ 初三数学复习知识点总结 ★ 初三中考数学知识点归纳总结 ★ 中考数学知识点总结最全提纲 ★ 初三数学知识点总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
九年级数学知识点归纳总结
临近中考,同学们该如何复习数学呢,数学知识点有哪些呢。以下是由我为大家整理的“九年级数学知识点归纳总结”,仅供参考,欢迎大家阅读。 九年级数学知识点归纳总结 一元一次不等式和一元一次不等式组 一、一般地,用符号“”(或“≥”)连接的式子叫做不等式。 能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式. 由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组 不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。 等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式. 二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质、 若a>b, 则a+c>b+c;、若a>b, c>0 则ac>bc若c<0, 则ac 不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c 三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1。 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。 六、常考题型: 1、 求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。 分解因式 一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。 三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式. 四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止. 五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法。2、运用公式法。 拓展阅读:提升数学成绩的方法 试题在于精不在于多 数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到很多题。 你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。 一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。 例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解。 对具有共性的问题要努力摸索规律,即多题一解。不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。 一道题的价值不在于做对、做会,而在于你明白了这题想考你什么。 从这个角度去领悟题,不仅可以快速的找到解题的突破口,而且不容易进入出题老师设置的陷阱。 分析试卷总结经验 每次考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。大家第一次月考基本结束了,可以借助第一次月考的试卷对自己进行一下分析: 平时注意把错题记下来,做错题笔记包括三个方面: (1)记下错误是什么,最好用红笔划出。 (2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。 (3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。 你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在中考时发生错误的概率就会大大减少。 把好的做法形成习惯 好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成? 可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。 另外将平常的考试看成是积累考试经验的重要途径,把平时考试当作中考,从各方面不断的调试,逐步适应。注意书写规范,重要步骤不能丢,丢步骤等于丢分。 根据解答题评卷实行“分段评分”的特点,你不妨做个心理换位,根据自己的实际情况,从平时做作业“全做全对”的要求中,转移到“立足于完成部分题目或题目的部分”上来,不要在一道题上花费太多时间,有时放弃可能是最佳选择。 眼看着期中考试就要来临,要想提升自己的数学成绩,现在开始就要改变了。虽说期中考试只是检验这半学期知识掌握情况的一个手段,但考得好和考得不好,对孩子以后的学习有很大的影响。 平常学得扎实的同学到了这时候是充满信心;平常学得不够好的同学则是战战兢兢。
九年级数学知识点有哪些?
九年级数学知识点:1、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。2、对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。3、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。4、平行线:在同一平面内,不相交的两条直线叫做平行线。5、命题:判断一件事情的语句叫命题。6、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。7、对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。8、两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”。9、两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”。10、两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”。11、两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS"。12、两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“HL”。
九年级数学知识点归纳
各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 九年级数学 知识点的学习资料,希望对大家有所帮助。 初三下册数学知识点 总结 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 九年级下册数学知识点 知识点1.概念 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到. (2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关. 知识点2.比例线段 对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段. 知识点3.相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等. 解读:(1)正确理解相似多边形的定义,明确“对应”关系. (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性. 知识点4.相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 解读:(1)相似三角形是相似多边形中的一种; (2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同; (4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比. 知识点5.相似三角的判定方法 (1)定义:对应角相等,对应边成比例的两个三角形相似; (2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似. (3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. (4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似. (5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似. (6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 知识点6.相似三角形的性质 (1)对应角相等,对应边的比相等; (2)对应高的比,对应中线的比,对应角平分线的比都等于相似比; (3)相似三角形周长之比等于相似比;面积之比等于相似比的平方. (4)射影定理 苏教版九年级上册数学知识点归纳 1二次根式:形如式子为二次根式; 性质:是一个非负数; 2二次根式的乘除: 3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并. 4海伦-秦九韶公式:,S是的面积,p为. 1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程. 2配方法:将方程的一边配成完全平方式,然后两边开方; 因式分解法:左边是两个因式的乘积,右边为零. 3一元二次方程在实际问题中的应用 4韦达定理:设是方程的两个根,那么有 1:一个图形绕某一点转动一个角度的图形变换 性质:对应点到中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等. 2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称; 中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形; 九年级数学知识点归纳相关 文章 : ★ 初三数学知识点归纳总结 ★ 九年级上册数学知识点归纳整理 ★ 初三数学知识点考点归纳总结 ★ 初三数学知识点归纳人教版 ★ 九年级数学上册重要知识点总结 ★ 九年级上册数学知识点归纳 ★ 初中九年级数学知识点总结归纳 ★ 初三数学中考复习重点章节知识点归纳 ★ 初三数学知识点整理
九年级数学知识点总结归纳
九年级数学的知识点很多,也很杂,学生们一定要扎实掌握,我整理了一些重要的知识点。 圆 1、在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。 2、圆的相关特点 (1)径 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d 直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r (2)弦 连接圆上任意两点的线段叫做弦.在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。 (3)弧 圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。 分式 1、整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。 2、分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算 1、乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 2、除法:除以一个分式等于乘以这个分式的倒数。 3、加减法: (1)同分母的分式相加减,分母不变,把分子相加减。 (2)异分母的分式先通分,化为同分母的分式,再加减。 分式方程 1、分母中含有未知数的方程叫分式方程。 2、使方程的分母为0的解称为原方程的增根。 一元二次方程 只有一个未知数,并且未知数的项的最高系数为2的方程。 1、一元二次方程的二次函数的关系 大家已经学过二次函数了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。 2、一元二次方程的解法 大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解。 (1)配方法 利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。 (2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。 (3)公式法 这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a。 以上是我整理的九年级数学的知识点,希望能帮到你。
九年级上册数学知识点归纳
学习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个脚印的踏,攀登一层一层的台阶,才能实现学习的理想。下面就是我为大家梳理归纳的知识,希望能够帮助到大家。 九年级上册数学知识点归纳一 圆的定义 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质 1、圆的对称性 (1)圆是图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O的半径为r,OP=d。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角的外心就是斜边的中点。) 8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。 9、中,A(x1,y1)、B(x2,y2)。 10、圆的切线判定。 (1)d=r时,直线是圆的切线。 切点不明确:画垂直,证半径。 (2)经过半径的外端且与半径垂直的直线是圆的切线。 切点明确:连半径,证垂直。 11、圆的切线的性质(补充)。 (1)经过切点的直径一定垂直于切线。 (2)经过切点并且垂直于这条切线的直线一定经过圆心。 12、切线长定理。 (1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。 (2)切线长定理。 ∵PA、PB切⊙O于点A、B ∴PA=PB,∠1=∠2。 13、内切圆及有关计算。 (1)内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。 (2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。 求:AD、BE、CF的长。 分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x. 可得方程:5-x+7-x=6,解得x=3 (3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。 求内切圆的半径r。 分析:先证得正方形ODCE, 得CD=CE=r AD=AF=b-r,BE=BF=a-r b-r+a-r=c 14、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。 BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。 (2)相交弦定理。 圆的两条弦AB与CD相交于点P,则PA?PB=PC?PD。 (3)切割线定理。 如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB?PC。 (4)推论:如图,PAB、PCD是⊙O的割线,则PA?PB=PC?PD。 15、圆与圆的位置关系。 (1)外离:d>r1+r2,交点有0个; 外切:d=r1+r2,交点有1个; 相交:r1-r2 内切:d=r1-r2,交点有1个; 内含:0≤d (2)性质。 相交两圆的连心线垂直平分公共弦。 相切两圆的连心线必经过切点。 16、圆中有关量的计算。 (1)弧长有L表示,圆心角用n表示,圆的半径用R表示。 (2)扇形的面积用S表示。 (3)圆锥的侧面展开图是扇形。 r为底面圆的半径,a为母线长。 九年级上册数学知识点归纳二 1二次根式:形如式子为二次根式; 性质:是一个非负数; 2二次根式的乘除: 3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并. 4海伦-秦九韶公式:,S是的面积,p为. 1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程. 2配 方法 :将方程的一边配成完全平方式,然后两边开方; 因式分解法:左边是两个因式的乘积,右边为零. 3一元二次方程在实际问题中的应用 4韦达定理:设是方程的两个根,那么有 1:一个图形绕某一点转动一个角度的图形变换 性质:对应点到中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等. 2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称; 中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形; 3关于原点对称的点的坐标 1圆、圆心、半径、直径、圆弧、弦、半圆的定义 2垂直于弦的直径 圆是图形,任何一条直径所在的直线都是它的对称轴; 垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧. 3弧、弦、圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 4圆周角 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径. 5点和圆的位置关系 点在圆外d>r 点在圆上d=r 点在圆内dR+r 外切d=R+r 相交R-r 九年级上册数学知识点归纳三 抛物线顶点坐标公式 y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a) y=ax2+bx的顶点坐标是(-b/2a,-b2/4a) 相关结论 过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有 ①x1 x2=p^2/4,y1 y2=—P^2,要在直线过焦点时才能成立; ②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2]; ③(1/|FA|)+(1/|FB|)=2/P; ④若OA垂直OB则AB过定点M(2P,0); ⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离); ⑥弦长公式:AB=√(1+k^2) │x2-x1│; ⑦△=b^2-4ac; ⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项; ⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。 ⑴△=b^2-4ac>0有两个实数根; ⑵△=b^2-4ac=0有两个一样的实数根; ⑶△=b^2-4ac<0没实数根。 九年级上册数学知识点归纳相关 文章 : ★ 九年级数学上册重要知识点总结 ★ 九年级上册数学知识点归纳整理 ★ 人教版九年级数学知识点归纳 ★ 初三上册数学知识点归纳 ★ 初三数学知识点上册总结归纳 ★ 初三数学知识点考点归纳总结 ★ 初三九年级上册数学知识点 ★ 初中九年级数学知识点总结 ★ 初中九年级数学知识点总结归纳 ★ 初中数学必备知识点总结初三数学上册一二章知识点
九年级上册数学知识点归纳
第21章 二次根式 学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。 在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论: 注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到 并运用它们进行二次根式的化简。 二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。 第22章 一元二次方程 学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。 本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念, 22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。 (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。 (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。 (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。 22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。 第23章 旋转 学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。 23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。 23.2中心对称一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的.点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。 23.3课题学习 图案设计一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。 第24章 圆 圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。 24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。 24.2与圆有关的位置关系一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明在同一直线上的三点不能作圆引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。 24.3正多边形和圆一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。 24.4弧长和扇形面积一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。 第25 章 概率初步 将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了概率一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。 25.1概率一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。 25.2用列举法求概率一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。 25.3利用频率估计概率一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。 25.4课题学习 键盘上字母的排列规律一节让学生通过这一课题的研究体会概率的广泛应用。
人教版初三数学知识点归纳
初三最后一年为了帮助大家更好的复习,下面是我整理的 数学知识点 ,供参考。 初三数学重要知识点 圆的对称性 1、圆的轴对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 2、圆的中心对称性 圆是以圆心为对称中心的中心对称图形。 二次函数 一般式 y=ax∧2;bx c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a); 顶点式 y=a(x m)∧2 k(a≠0,a、m、k为常数)或y=a(x-h)∧2 k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式; 平方根 ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。 ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 反比例函数的性质 (1)反比例函数y=xk(k≠0)的图象是双曲线; (2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小; (3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大. 中考数学应该注意的几个方面 培养什么样的能力 1.运算能力,否则每次考试初中数学大题第一题你就开始错! 2.空间想象能力,否则初中数学几何题会让你痛不欲生! 3.逻辑思维能力,否则以后的证明题和推导题会让你生不如死! 4.将实际问题抽象为数学问题的能力,不然应用题会让你虽死犹生! 提高自己的解题能力 1.模仿初中数学书本上的例题解题过程,模仿老师的解题过程。解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。 2.实践。如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。 3.提高自己的初中数学解题能力,光靠模仿是不够的,你必须要及时归纳总结,甚至把一类题的解题技巧找到,形成自己的秘笈。