空间几何体表面积体积公式汇总
表面积计算1、直棱柱和正棱锥的表面积设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、如果设它的底面边长为a、底面周长为c、斜高为h'、则得到正n棱锥的侧面积计算公式S=1/2*nah'=1/2*ch'、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、2、正棱台的表面积正棱台的侧面展开图是一些全等的等腰梯形、设棱台下底面边长为a、周长为c、上底面边长为a'、周长为c'、斜高为h'则得到正n棱台的侧面积公式: S=1/2*n(a+a')h'=1/2(c+c')h'、3、球的表面积S=4πR^2、即球面面积等于它的大圆面积的四倍、4.圆台的表面积圆台的侧面展开图是一个扇环,它的表面积等于上,下两个底面的面积和加上侧面的面积,即S=π(r'^2+r^2+r'l+rl)体积计算1、长方体体积:V=abc=Sh2、柱体体积所有柱体:V=Sh、即柱体的体积等于它的底面积S和高h的积、圆柱:V=πr^2h、3、棱锥:V=1/3*Sh4、圆锥:V=1/3*πr^2h5、棱台:V=1/3*h(S+(√SS')+S')6、圆台:V=1/3*πh(r^2+rr'+r'^2)7、球:V=4/3*πR^3扩展资料:基本空间几何体多面体概念:多面体是由若干个平面多边形所围成的几何体。结构特征:围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱和棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线。分类:把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫凸多面体;如果其余的各面不都在这个平面的同一侧,则这样的多面体叫凹多面体。1、棱柱定义:棱柱有两个面互相平行、而其余每相邻两个面的交线都互相平行。棱柱的两个互相平行的面叫做棱柱的底面;其余个面叫做棱柱的侧面;两侧面的公共边叫棱柱的侧棱;棱柱两底面之间的距离、叫棱柱的高。侧棱与底面不垂直的棱柱叫斜棱柱;侧棱与底面垂直的棱柱的叫直棱柱;底面是正多边形的直棱柱叫正棱柱;底面是平行四边形的棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面是矩形的直平行六面体是长方体;棱长都相等的长方体是正方体。2、棱锥定义:棱锥有一个面是多边形,而其余各面都是有一个公共顶点的三角形。棱锥中有公共顶点的各三角形叫棱锥的侧面;各侧面的公共顶点叫棱锥的顶点;相邻两侧面的公共边叫棱锥的侧棱;多边形叫棱锥的底面;顶点到底面的距离叫棱锥的高。棱锥用表示顶点和地面各顶点的字母或者用表示顶点和底面的一条对角线短点的字母来表示、例如:S-ABCD。如果棱锥的底面是正多边形、它的顶点又在过底面中心且与底面垂直的直线上、则这个棱锥叫做正棱锥。容易验证:正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高。3、棱台定义:棱锥被平行于底面的平面所截,截面和底面间的部分叫棱台。原棱锥的底面和截面分别叫做棱台的下底面、上底面;其他各面叫棱台的侧面;相邻两侧面的公共边叫棱台的侧棱;两底面间的距离叫棱台的高。由正棱锥截得的棱台叫正棱台。正棱台各侧面都是全等的等腰梯形、这些等腰梯形的高叫棱台的斜高,棱台可用表示上下底面的字母来命名、例如:ABCD-A'B'C'D'。旋转体定义:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。1、圆柱定义:可以看做以矩形的一边为旋转轴、旋转一周形成的曲面所围成的几何体。旋转轴叫做圆柱的轴;旋转所形成两个圆叫做圆柱的底面,所形成的曲面叫做圆柱的侧面;上底面到下底面的距离叫做圆柱的高;沿圆柱表面从上底面到下底面且垂直底面的任何一条线叫做圆柱体的母线。2、圆锥定义:可以看做以直角三角形的一直角边为旋转轴、旋转一周形成的曲面所围成的几何体。圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离叫做圆锥的母线。3、圆台定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。也可以看做以直角梯形中垂直于底边的腰所在的直线为旋转轴、旋转一周形成的曲面所围成的几何体。旋转轴叫做圆台的轴;直角梯形上、下底旋转所成的圆面称为圆台的上、下底面,另一腰旋转所成的曲面称为圆台的侧面;侧面上各个位置的直角梯形的腰称为圆台的母线;圆台的轴上的梯形的腰的长度叫做圆台的高,圆台的高也是上、下底面间的距离。4、球定义:一个半圆绕着它的直径所在的直线旋转一周所形成的曲面所围成的几何体。形成球的半圆的圆心叫球心;连接球面上一点和球心的线段叫球的半径;连接球面上两点且通过球心的线段叫球的直径。球面也可以看作空间中到一个定点的距离等于定长的点的集合。参考资料:百度百科----空间几何体
数学空间几何体体积和表面积的全部公式
空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR²+πR[(h²+R²)的平方根] 体积: πR²h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长, S=6a² ,V=a³4、长方体 a-长 ,b-宽 ,c-高 S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积 h-高 V=Sh 6、棱锥 S-底面积 h-高 V=Sh/3 7、棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积 ,S2-下底面积 ,S0-中截面积 h-高, V=h(S1+S2+4S0)/6 9、圆柱 r-底半径 ,h-高 ,C—底面周长 S底—底面积 ,S侧—侧面积 ,S表—表面积 C=2πr S底=πr²,S侧=Ch ,S表=Ch+2S底 ,V=S底h=πr²h 10、空心圆柱 R-外圆半径 ,r-内圆半径 h-高 V=πh(R^2-r^2) 11、直圆锥 r-底半径 h-高 V=πr^2h/3 12、圆台 r-上底半径 ,R-下底半径 ,h-高 V=πh(R²+Rr+r²)/3 13、球 r-半径 d-直径 V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径 V=πh(3a²+h²)/6 =πh²(3r-h)/3 15、球台 r1和r2-球台上、下底半径 h-高 V=πh[3(r1²+r2²)+h²]/6 16、圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr² =π2Dd²/4 17、桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)
- - 高中数学解析几何所有公式?
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h 不够的话去这儿看:http://www.globalsino.com/children/1/1children9883.html
高中必修2几何体表面积公式大全
高中必修2空间几何体表面积体积公式:
圆柱体的体积公式:体积=底面积×高
,如果用h代表圆柱体的高,则圆柱=s底×h
长方体的体积公式:体积=长×宽×高
如果用a、b、c分别表示长方体的长、宽、高,则:
长方体体积公式为:v长=abc
正方体的体积公式:体积=棱长×棱长×棱长.
如果用a表示正方体的棱长,则:
正方体的体积公式为v正=a·a·a=a³
锥体的体积=底面面积×高÷3
v
圆锥=s底×h÷3
台体体积公式:v=[
s上+√(s上s下)+s下]h÷3
圆台体积公式:v=[s+s′+√(ss′)]h÷3=πh(r2+rr+r2)/3
球缺体积公式=πh²(3r-h)÷3
球体积公式:v=4πr³/3
棱柱体积公式:v=s底面×h=s直截面×l (l为侧棱长,h为高)
棱台体积:v=[s1+s2+开根号(s1*s2)]h/3
注:v:体积;s1:上表面积;s2:下表面积;h:高。
------
几何体的表面积计算公式
圆柱体:
表面积:2πrr+2πrh
体积:πrrh
(r为圆柱体上下底圆半径,h为圆柱体高)
圆锥体:
表面积:πrr+πr[(hh+rr)的平方根]
体积:
πrrh/3
(r为圆锥体低圆半径,h为其高,
平面图形