数据挖掘项目

时间:2024-06-05 11:16:15编辑:coo君

数据挖掘是什么?

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘流程:定义问题:清晰地定义出业务问题,确定数据挖掘的目的。数据准备:数据准备包括:选择数据–在大型数据库和数据仓库目标中 提取数据挖掘的目标数据集;数据预处理–进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。数据挖掘的技术,可粗分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、CBR、遗传算法、贝叶斯信念网络等。神经网络方法,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是基于可视化的多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

什么是数据挖掘?

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘流程:定义问题:清晰地定义出业务问题,确定数据挖掘的目的。数据准备:数据准备包括:选择数据–在大型数据库和数据仓库目标中 提取数据挖掘的目标数据集;数据预处理–进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。

数据挖掘与传统分析方法有什么区别

回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。 ①分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 ②回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。 ③聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 ④关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。 ⑤特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。 ⑥变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 ⑦Web页挖掘。随着Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,通过对Web的挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。


简述数据挖掘和传统分析方法的区别

数据挖掘和传统分析方法最大的区别在于对计算机编程能力的要求。作为数据分析很多情况下需要用到成型的分析工具,比如EXCEL、SPSS,或者SAS、R。一个完全不懂编程,不会敲代码的人完全可以是一名能好的数据分析师,因为一般情况下OFFICE包含的几个工具已经可以满足大多数数据分析的要求了。而数据挖掘则需要有编程基础。一是目前的数据挖掘方面及相关的研究生方面绝大多数是隶属于计算机系;二是在招聘岗位上,国内比较大的公司挂的岗位名称大多数为“数据挖掘工程师”。在对行业的理解的能力数据分析师对于所从事的行业要有比较深的了解和理解,并且能够将数据与自身的业务紧密结合起来。简单举个例子来说,给你一份业务经营报表,你就能在脑海中勾画出目前经营状况图,能够看出哪里出现了问题。但是,从事数据挖掘不一定要求对行业有这么高的要求。专业知识面的要求数据分析师更关注于业务层面,数据挖掘工程师更关注于技术层面。想要学习了解更多数据挖掘的信息,推荐CDA数据分析师课程。CDA 数据分析师行业标准由国际范围数据科学领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过 CDA 认证考试者可获得 CDA 数据分析师中英文认证证书。点击预约免费试听课。


什么是数据挖掘?

由于数据科学刚刚兴起,数据科学家作为一种新生职业被提出,数据研究高级科学家Rachel Schutt将其定义为“计算机科学家、软件工程师和统计学家的混合体“。数据挖掘作为一个学术领域,横跨多个学科,涵盖了统计学、数学、机器学习和数据库等,此外还包括各类专业方向比如从油田电力、海洋生物、历史文本、电子通讯、法律税务等的各个专业领域。注意每一分类都需要相当的行业经验。


什么是数据挖掘,简述其作用和应用。

1)数据挖掘能做以下七种不同事情(分析方法):数据挖掘· 分类 (Classification) · 估值(Estimation) · 预言(Prediction) · 相关性分组或关联规则(Affinity grouping or association rules) · 聚集(Clustering) · 描述和可视化(Description and Visualization) · 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等) 2)数据挖掘分类 以上七种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘 · 直接数据挖掘 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。 · 间接数据挖掘 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系 。 · 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘 3)各种分析方法的简介 · 分类 (Classification) 首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。 例子: a. 信用卡申请者,分类为低、中、高风险 b. 故障诊断:中国宝钢集团与上海天律信息技术有限公司合作,采用数据挖掘技术对钢材生产的全流程进行质量监控和分析,构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。 注意: 类的个数是确定的,预先定义好的 · 估值(Estimation) 估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类数据挖掘的类别是确定数目的,估值的量是不确定的。 例子: a. 根据购买模式,估计一个家庭的孩子个数 b. 根据购买模式,估计一个家庭的收入 c. 估计real estate的价值 一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。 · 预言(Prediction) 通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。 例子: 海南航空引入领先的数据挖掘工具马克威分析系统,分析客流、燃油等变化趋势,以航线收益为主题进行数据挖掘,制定精细的销售策略,有效提高了企业收益。 · 相关性分组或关联规则(Affinity grouping or association rules) 决定哪些事情将一起发生。 例子: a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则) b. 客户在购买A后,隔一段时间,会购买B (序列分析) · 聚集(Clustering) 聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。 例子: a. 一些特定症状的聚集可能预示了一个特定的疾病 b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群 聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一 类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。 c. 中国移动采用先进的数据挖掘工具马克威分析系统,对用户wap上网的行为进行聚类分析,通过客户分群,进行精确营销。


想数据分析,又不想写代码,用什么?

数据分析虽然要写代码,但重点不是写代码,而是统计学和业务的理解,数据分析代码以脚本语言为主。如Python,很多算法、函数已经封装好,不需要自己编写,直接调用。
正常来说,数据分析的入门基础是SQL和统计学,但是同时呢,数据分析的工具也是很多的,例如SPSS,作为一款菜单式操作软件要比编程性软件入门简单。
甚至于说,如果你要做简单的数据分析的话,excel就够用了……


大数据挖掘技术主要有哪些?谁知道?

大数据环境有以下这些特点, 因此涉及的挖掘技术也与之对应:1.数据来源多, 大数据挖掘的研究对象往往不只涉及一个业务系统, 肯定是多个系统的融合分析, 因此,需要强大的ETL技术, 将多个系统的数据整合到一起, 并且, 多个系统的数据可能标准不同, 需要清洗。2.数据的维度高, 整合起来的数据就不只传统数据挖掘的那一些维度了, 可能成百上千维, 这需要降维技术了。3.大数据量的计算, 在单台服务器上是计算不了的, 这就需要使用分布式计算, 所以要掌握各种分布式计算框架, 像hadoop, spark之类, 需要掌握机器学习算法的分布式实现。

数据挖掘的技术都有哪些?

如果我们学习数据分析,那么肯定少不了也要好好学习一下数据挖掘。我们都知道,要想掌握好数据挖掘就需要掌握很多的相关技术。一般来说,数据挖掘工作的技术有关联规则、分类、聚类、决策树、序列模式,下面我们就给大家讲述一下这些知识。
1.关联规则
首先我们给大家讲述一下关联规则,一般来说,关联规则使两个或多个项之间的关联以确定它们之间的模式。关联通常用于销售点系统,以确定产品之间的共同趋势。在数据挖掘中,这是一个非常简单的方法,人们会惊讶与其中有多少智慧和洞察,它可以提供许多企业的日常使用的信息,来提高效率和增加收入,应用领域包括物品的实物摆放组织、市场营销和产品的交叉销售和上销。所以解决商业问题离不开数据挖掘技术中的关联规则。
2.分类
然后给大家说一说分类我们可以使用多个属性来标记特定类别的项。分类将项目分配到目标类别或类中,以便准确地预测该类内部会发生什么。某些行业会将客户进行分类。通过分类我们能够知道其中的情况,然后根据这些情况进行下一步动作。
3.聚类
接着给大家说一下聚类,聚类是将数据记录组合在一起的方法,通常这样做是为了让最终用户对数据库中发生的事情有一个高层次的认识。查看对象分组情况可以帮助市场细分领域的企业。在这个例子中可以使用聚类将市场细分为客户子集。然后,每个子集可以根据簇的属性来制定特定的营销策略。
4.决策树
决策树用于分类或预测数据。决策树从一个简单的问题开始,它有两个或多个的答案。每个答案将会引出进一步的问题,该问题又可被用于分类或识别可被进一步分类的数据,或者可以基于每个答案进行预测。将数据分成多个叶结点,所有叶结点的数据记录数的加和等于输入数据的记录总数。例如,父结点中的数据记录总数等于其两个子结点中包含的记录总和。当在决策树上上下移动时,流失前和流失后的客户数量是需要存储的。能够很容易的理解模型的构建。如果你需要针对可能流失的客户提供一份市场营销方案,则该模型非常易于使用。
5.序列模式
序列模式识别相似事件的趋势或通常情况发生的可能。这种数据挖掘技术经常被用来助于理解用户购买行为。许多零售商通过数据和序列模式来决定他们用于展示的产品。根据客户数据,您可以识别客户在一年中不同时间购买的特定的商品集合。
通过上述的内容我们不难看出,数据挖掘工作基本上都是去解决商业问题的,所以对于产品经理来说,好好了解和掌握数据挖掘知识,对自己的职业发展是非常有帮助的,当然,只是了解这些还是不够的,我们还要学习更多的知识来丰富自己,让自己的职场人生更加光彩溢目。


上一篇:美宝莲好气色轻唇膏

下一篇:郑州武术学校