平方求和公式 急
平方和公式n(n+1)(2n+1)/6
即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方)
证明1+4+9+…+n^2=N(N+1)(2N+1)/6
证法一(归纳猜想法):
1、N=1时,1=1(1+1)(2×1+1)/6=1
2、N=2时,1+4=2(2+1)(2×2+1)/6=5
3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6
则当N=x+1时,
1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2
=(x+1)[2(x2)+x+6(x+1)]/6
=(x+1)[2(x2)+7x+6]/6
=(x+1)(2x+3)(x+2)/6
=(x+1)[(x+1)+1][2(x+1)+1]/6
也满足公式
4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证.
证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1):
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
.
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
数学资料里的“平方和”是什么?
平方和,就是2个或多个数的平方相加,通常是一些正整数的平方之和,整数的个数可以是有限个,也可以是无限多。平方和公式:n(n+1)(2n+1)/6,即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:n^2=n的平方) 本系列丛书搜集的是世界各国各历史时期的初等数学经典。大多兼有数学教育史史料研究及弥补当前初等数学教材不系统、缺深度、少背景介绍等缺陷之功能。冯克勤所著的《平方和》为其中一册,共分四章及附录:本书介绍有关代数数论的几段很不简单的数学史,以及数学思想和解题方法。公式:平方和公式:1、(各数的平方之和)2、a²+b²=(a+b)²-2ab =(a-b)²+2ab(完全平方公式的变形)
完全平方差公式和平方差公式,有什么区别?
1、公式不同完全平方差公式:(a-b)²=a²-2ab+b²。平方差公式:a²-b²=(a+b)(a-b)。2、计算具体数据结果不同(若a=2,b=1)完全平方差公式:(a-b)²=a²-2ab+b²=1。平方差公式:a²-b²=(a+b)(a-b)=3。3、表达意思不同完全平方差公式:两数差的平方,等于它们的平方和减去它们的积的2倍。平方差公式:指两个数的和与这两个数差的积,等于这两个数的平方差。扩展资料:完全平方公式口诀:首平方,尾平方,首尾相乘放中间。或首平方,尾平方,两数二倍在中央。也可以是:首平方,尾平方,积的二倍放中央。(a±b)²=a²±2ab+b²同号加、异号减,负号添在异号前。即(a+b)²=a²+2ab+b²(a-b)²=a²-2ab+b²注意:后面一定是加号。参考资料来源:百度百科-完全平方公式百度百科-平方差公式