霍尔效应实验报告

时间:2024-06-16 17:45:01编辑:coo君

霍尔效应实验报告预习怎么写

实验报告——霍尔效应










勾天杭


PB05210273





4+


数据处理:

1
、保持
Im=0.45A
不变,作
Vh

Is
曲线
注意有效位数的选取


1
3.5
1.5
5.2325
2
6.9725
2.5
8.715
3
10.455
3.5
12.1875
4
13.92
4.5
15.6575



Linear Regression for Data1_F:

处理数据要有误差分析

Y = A + B * X

Parameter
Value
Error
------------------------------------------------------------
A







0.02539
0.00368
B







3.4744
0.00124
------------------------------------------------------------

R



SD
N



P
------------------------------------------------------------
1
0.00401
8
<0.0001
------------------------------------------------------------


2
、保持
Is=4.5mA
不变,作
Vh

Im
曲线
有效数字的保留





Im
Vh
0.1
3.3775
0.15
5.05
0.2
6.7825
0.25
8.5375
0.3
10.3
0.35
12.145
0.4
13.9075
0.45
15.6525




Linear Regression for Data3_F:
Y = A + B * X

Parameter
Value
Error
------------------------------------------------------------
A





-0.22551
0.04643
B





35.25298
0.15586
------------------------------------------------------------

R






SD
N



P
------------------------------------------------------------
0.99994
0.05051
8
<0.0001
------------------------------------------------------------
3
、在零电场下取
Is=0.1mA
,测得
V
σ
=9.21mV

-9.20mV


mV
V
205
.
9



4
、确定样品的导电类型:






假设样品中的载流子为空穴,
则载流子的速度方向与电流一致。
可以判定,
此时正电荷受力
向上,即上边积累正电荷,下边无电荷。如果实验测得
U
粉白
>0
,说明假设是正确的。反之,
载流子为电子。实验结果为
U
粉白
<0
。∴载流子为电子。


下面计算
R
H

n

σ

μ


线圈参数
=4400GS/A

d=0.20mm

b=3.0mm

L=5.0mm


骤一

的数
据,
Im=0.45A


线性
拟合

得直
线
的斜
率为
3.4744

Ω


结合
d
B
I
R
V
s
H
H


B=Im*
线圈参数
=1980GS=0.198T
;有
4744
.
3

d
B
R
H
Ω


若取
d
的单位为
cm
;磁场单位
GS
;电位差单位
V
;电流单位
A
;电量单位
C
;代入数值
,

R
H
=3509.5cm
3
/C

n=1/R
H
e=1.78*10
15
cm
-3


bd
V
L
I
s



=0.09053(S/m)


H
R



=3.17715(cm
2
/Vs)




思考题:

1
、若磁场不恰好与霍尔元件片底法线一致,对测量结果有何影响,如果用实验方法判断
B
与元件发现是否一致?

如左图,
若磁场方向与法线不一致,
载流子不但在上
下方向受力,
前后也受力
(为洛仑兹力的两个分量)

而我们把洛仑兹力上下方向的分量当作合的洛仑兹
力来算,
导致测得的
Vh
比真实值小。
从而,
RH
偏小,
n
偏大;
σ
偏大;
μ
不受影响。可测量前后两个面的
电势差。若不为零,则磁场方向与法线不一致。






2
、能否用霍尔元件片测量交变磁场?
电荷交替在上下面积累,不会形成固定的电势差
,
所以
不可能测量交变的磁场

我认为可以用霍尔元件侧交变磁场。由于霍尔效应建立所需时间很短
(10-12~10-14s),
因此
霍尔元件使用交流电或者直流电都可。
交流电时,
得到的霍尔电压也是交变的。
根据本试验
中的方法,可求得磁感应强度的有效值;磁场的频率应与磁化电流的频率一致。


霍尔效应实验报告

霍尔效应实验报告包含:实验目的、实验仪器设备、实验的基本构思和原理、实验数据记录及处理、实验结论、注意事项等。1、目的与要求:(1)了解霍尔效应测量磁场的原理和方法;(2) 观察磁电效应现象;(3) 学会用霍尔元件测量磁场及元件参数的基本方法。2、仪器与装置:霍尔效应实验仪;3、原理:根据霍尔效应,测量磁感应强度原理,利用提供的仪器测试所给模型测量面上的一维(上下方向)磁分布。扩展资料内容及步骤:1、仪器调整:(1)按图连接、检查线路,并调节样品支架,使霍尔片位于磁场中间;(2)逆时针将、调节旋钮旋至最小; (3)分别将输出、输出接至实验仪中、换向开关;(4)用导线将、输入短接,通过调零旋钮将、显示调零;(5)选择、向上关闭为、的正方向。2、 测量内容:(1)测绘曲线:保持不变,按要求调节,分别测出不同下的四个值,将数据记录在表格中;(2)测绘曲线:保持不变,测出不同下四个值;(3)测VAC:取,在零磁场下()测,则VAC=10;(4)确定样品导电类型:选、为正向,根据所测得的的符号,判断样品的导电类型。

霍尔效应实验报告预习怎么写

一、实验名称: 霍尔效应原理及其应用
二、实验目的:
1、了解霍尔效应产生原理;
2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;
3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;
4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)
四、实验原理:
1、霍尔效应现象及物理解释
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。
半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。
为霍尔元件灵敏度。根据RH可进一步确定以下参数。
(1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。
(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。
(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:
2、霍尔效应中的副效应及其消除方法
上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。
(1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。
(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。
(3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。
(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。
综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。
通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,
3、直螺线管中的磁场分布
1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。
2、直螺旋管离中点 处的轴向磁感应强度理论公式:
式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。
X=0时,螺旋管中点的磁感应强度
五、 实验内容:
测量霍尔元件的 、 关系;
1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。
2、接通电源,电流表显示“0.000”。有时, 调节电位器或 调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。电压表显示“0.0000”。
3、测定 关系。取 =900mA,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为1.00,2.00,…,10.00mA,将 和 极性开关选择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表1。
4、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
5、测定 关系。取 =10 mA ,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为0,100,200,…,900 mA,将 和 极性开关择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表2。
6、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
测量长直螺旋管轴向磁感应强度
1、取 =10 mA, =900mA。
2、移动水平调节螺钉,使霍尔元件在直螺线管中的位置 (水平移动游标尺上读出),先从14.00cm开始,最后到0cm点。改变 和 极性,记录相应的电压表读数 值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度 。
3、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值 比较,用百分误差的形式表示测量结果。式中 ,其余参数详见仪器铭牌所示。
六、 注意事项:
1、为了消除副效应的影响,实验中采用对称测量法,即改变 和 的方向。
2、霍尔元件的工作电流引线与霍尔电压引线不能搞错;霍尔元件的工作电流和螺线管的励磁电流要分清,否则会烧坏霍尔元件。
3、实验间隙要断开螺线管的励磁电流 与霍尔元件的工作电流 ,即 和 的极性开关置0位。
4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸霍尔元件。


工作电流I为交变电流时如何测量霍尔电压 急求!!!!!! 要详细的答案

1、霍尔电压E=KIB,K为灵敏度系数,I为工作电流,B为与霍尔片及I垂直的磁感应强度的分量。
也就是说,霍尔电压与电流及磁感应强度的乘积成正比。
2、工作电流为交变电流时,如果外磁场是恒定磁场,霍尔电压为与工作电流同频率的电压信号。
3、如果外部磁场也是交变磁场,霍尔电压的波形为两个信号的乘积的波形,如果工作电流和外磁场是同频正弦波,电压为包含直流分量的倍频的正弦波(相位90°时,不含直流分量)。


用霍尔效应法则测量磁场实验报告怎么写急用

什么目的、原理自己抄实验手册吧,以下是思考题答案

第一题
1.有励磁电流通过螺线管,即有待测B
2.样品置于B中
3.样品有恒定电流通过。
在样品纵向就有霍尔电压产生,用导线输出测量电压,从而可以计算处螺线管的磁场。

霍尔电压的方向和样品,磁场B,样品上的电流方向有关,样品分为P型和N型,分别是空穴载流子,和电子载流子,根据洛仑兹力公式可以判断霍尔电压方向。

第二题

1)厄廷好森(Etinghausen)效应引起的电势差UE。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势UE。可以证明UE∝IB。容易理解UE的正负与I和B的方向有关。

(2)能斯特(Nernst)效应引起的电势差UN。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍耳效应类似,该热扩散电流也会在3、4点间形成电势差UN。若只考虑接触电阻的差异,则UN的方向仅与B的方向有关。

(3)里纪-勒杜克(Righi-Leduc)效应产生的电势差UR。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势UR。UR的正负仅与B的方向有关,而与I的方向无关。

(4)不等电势效应引起的电势差U0。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一条等势线上。因而只要有电流,即使没有磁场B,3、4两点间也会出现电势差U0。U0的正负只与电流I的方向有关,而与B的方向无关。

综上所述,在确定的磁场B和电流IS下,实际测出的电压是霍耳效应电压与副效应产生的附加电压的代数和。人们可以通过对称测量方法,即改变IS和磁场B的方向加以消除和减小副效应的影响。在规定了电流IS和磁场B正、反方向后,可以测量出由下列四组不同方向的IS和B组合的电压。即:

+B,+IS:U1= UH+UE+UN+UR+U0

+B,-IS:U2=-UH-UH+UN-UR-U0

-B,-IS:U3= UH+UE-UN-UR-U0

-B,+IS:U4=-UH-UE-UN+UR+U0

然后求U1,U2,U3,U4的代数平均值得:

UH=1/4(U1-U2+U3-U4)-UE

通过上述测量方法,虽然不能消除所有的副效应,但考虑到UE较小,引入的误差不大,可以忽略不计,因此霍耳效应电压UH可近似为

UH=1/4(U1-U2+U3-U4)(19-6)

不知道是不是同一个版本的书,你看看吧


励磁电流与霍尔电压的关系的实验报告怎么写啊 急急急急急急急!!!!!!

霍尔效应》参考实验报告实验目的1.了解霍尔效应实验原理。2.测量霍尔电流与霍尔电压之间的关系。3.测量励磁电流与霍尔电压之间的关系。4.学会用“对称测量法”消除负效应的影响。5.会确定样品的导电类型。实验仪器 霍尔效应实验仪。实验步骤1.正确连接电路,调节霍尔元件处于隙缝的中间位置。2.测量不等位电势。令励磁电流 =0mA,霍尔电流 =1.00mA,2.00mA,…,10.00mA,测量霍尔元件的不等位电势随霍尔电流的对应关系。2.测量霍尔电流 与霍尔电压 的关系。令励磁电流 =400mA,调节霍尔电流 =1.00mA,2.00mA,…,10.00mA(每隔1.0mA改变一次),分别改变励磁电流和霍尔电流的方向,记录对应的霍尔电压。3.测量励磁电流 与霍尔电压 的关系。令霍尔电流 =8.00mA,调节励磁电流 =100.0mA,200.0mA,…,1000.0mA(每隔100.0mA改变一次),分别改变励磁电流和霍尔电流的方向,记录对应的霍尔电压。 实验数据记录及处理(1)测量不等位电压霍尔电流1.002.003.004.005.006.007.008.009.0010.00不等位电压 (2)测量霍尔电流和霍尔电压的关系( =400mA)I (mA)(霍尔电流) ,+ +B,- -B,- (mV)1.00 2.00 …….….………9.00 10.00 (3)测量励磁电流和霍尔电压的关系( =8.00mA)(mA)(励磁电流)+B,+ -B,+ +B,- -B,- (mV)100 200 ………………900 1000 实验结论1、 当励磁电流 =0时,霍尔电压不为0,且随着霍尔电流的增加而增加,通过作图发现二者满足线性关系。说明在霍尔元件内存在一不等位电压,这是由于测量霍尔电压的两条接线没有在同一个等势面上造成的。2、 当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,通过作图发现二者之间满足线性关系。3、 当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,通过作图发现二者之间也满足线性关系。
实验中的注意问题1、 不要带电接线,中间改变电路时,一定要先关闭电源,再连接电路。2、 实验完成后要整理实验仪器,先关闭电源,再将电线拆下,捋好后放在实验仪器的右侧。3、 作图要使用铅笔,先描点,描点要清晰,然后使用平滑曲线连接各点。


霍尔效应磁感应强度与励磁电流什么关系?

  霍尔效应磁感应强度与励磁电流呈线性关系。  附:霍尔效应简介:  霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机制时发现的。当电流垂直于外磁场通过导体时,垂直于电流和磁场的方向会产生一附加电场,从而在导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。霍尔效应应使用左手定则判断。  在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场强度与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移,这个现象称为霍尔效应。而产生的内建电压称为霍尔电压。  方便起见,假设导体为一个长方体,长度分别为a、b、d,磁场垂直ab平面。电流经过ad,电流I = nqv(ad),n为电荷密度。设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。设磁场强度为B。  洛伦兹力f=qE+qvB/c(Gauss 单位制)  电荷在横向受力为零时不再发生横向偏转,结果电流在磁场作用下在器件的两个侧面出现了稳定的异号电荷堆积从而形成横向霍尔电场  由实验可测出 E= UH/W 定义霍尔电阻为  RH= UH/I =EW/jW= E/j  j = q n v  RH=-vB/c /(qn v)=- B/(qnc)  UH=RH I= -B I /(q n c)  3本质  固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。

用霍尔效应法则测量磁场实验报告怎么写

什么目的、原理自己抄实验手册吧,以下是思考题答案

第一题
1.有励磁电流通过螺线管,即有待测B
2.样品置于B中
3.样品有恒定电流通过。
在样品纵向就有霍尔电压产生,用导线输出测量电压,从而可以计算处螺线管的磁场。

霍尔电压的方向和样品,磁场B,样品上的电流方向有关,样品分为P型和N型,分别是空穴载流子,和电子载流子,根据洛仑兹力公式可以判断霍尔电压方向。

第二题

1)厄廷好森(Etinghausen)效应引起的电势差UE。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势UE。可以证明UE∝IB。容易理解UE的正负与I和B的方向有关。

(2)能斯特(Nernst)效应引起的电势差UN。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍耳效应类似,该热扩散电流也会在3、4点间形成电势差UN。若只考虑接触电阻的差异,则UN的方向仅与B的方向有关。

(3)里纪-勒杜克(Righi-Leduc)效应产生的电势差UR。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势UR。UR的正负仅与B的方向有关,而与I的方向无关。

(4)不等电势效应引起的电势差U0。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一条等势线上。因而只要有电流,即使没有磁场B,3、4两点间也会出现电势差U0。U0的正负只与电流I的方向有关,而与B的方向无关。

综上所述,在确定的磁场B和电流IS下,实际测出的电压是霍耳效应电压与副效应产生的附加电压的代数和。人们可以通过对称测量方法,即改变IS和磁场B的方向加以消除和减小副效应的影响。在规定了电流IS和磁场B正、反方向后,可以测量出由下列四组不同方向的IS和B组合的电压。即:

+B,+IS:U1= UH+UE+UN+UR+U0

+B,-IS:U2=-UH-UH+UN-UR-U0

-B,-IS:U3= UH+UE-UN-UR-U0

-B,+IS:U4=-UH-UE-UN+UR+U0

然后求U1,U2,U3,U4的代数平均值得:

UH=1/4(U1-U2+U3-U4)-UE




通过上述测量方法,虽然不能消除所有的副效应,但考虑到UE较小,引入的误差不大,可以忽略不计,因此霍耳效应电压UH可近似为

UH=1/4(U1-U2+U3-U4)(19-6)


不知道是不是同一个版本的书,你看看吧


上一篇:电脑处理器排行榜

下一篇:双色球最近开奖信息