太阳系示意图

时间:2024-06-17 01:52:21编辑:coo君

太阳外部结构示意图

太阳外部结构示意图见下:太阳光球以上的部分统称为太阳大气层,跨过整个电磁频谱,从无线电、可见光到伽马射线,都可以观察它们分为5个主要的部分:温度极小区、色球、过渡区、日冕、和太阳圈,太阳圈可能是太阳大气层最稀薄的外缘并且延伸到冥王星轨道之外与星际物质交界,交界处称为日鞘,并且在那儿形成剪切的激波前缘。色球、过渡区和日冕的温度都比太阳表面高,原因还没有获得证实,但证据指向阿尔文波可能携带了足够的能量将日冕加热。太阳是太阳系的中心天体,占有太阳系总体质量的99.86%。太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳公转,而太阳则围绕着银河系的中心公转。太阳是位于太阳系中心的恒星,它几乎是热等离子体与磁场交织着的一个理想球体。从化学组成来看,现在太阳质量的大约四分之三是氢,剩下的几乎都是氦,包括氧、碳、氖、铁和其他的重元素质量少于2%,采用核聚变的方式向太空释放光和热。扩展资料:对流层上面的太阳大气,称为太阳光球。光球是一层不透明的气体薄层,厚度约500千米。它确定了太阳非常清晰的边界,几乎所有的可见光都是从这一层发射出来的。色球位于光球之上。厚度约2000千米。太阳的温度分布从核心向外直到光球层,都是逐渐下降的,但到了色球层,却又反常上升,到色球顶部时已达几万度。由于色球层发出的可见光总量不及光球的1%,因此人们平常看不到它。只有在发生日全食时,即食既之前几秒种或者生光以后几秒钟,当光球所发射的明亮光线被月影完全遮掩的短暂时间内,在日面边缘呈现出狭窄的玫瑰红色的发光圈层,这就是色球层。平时,科学家们要通过单色光色球望远镜才能观测到太阳色球层。日冕是太阳大气的最外层,由高温、低密度的等离子体所组成。亮度微弱,在白光中的总亮度比太阳圆面亮度的百分之一还低,约相当于满月的亮度,因此只有在日全食时才能展现其光彩,平时观测则要使用专门的日冕仪。日冕的温度高达百万度,其大小和形状与太阳活动有关,在太阳活动极大年时,日冕接近圆形;在太阳宁静年则呈椭圆形。自古以来,观测日冕的传统方法都是等待一次罕见的日全食——在黑暗的天空背景上,月面把明亮的太阳光球面遮掩住,而在日面周围呈现出青白色的光区,就是人们期待观测的太阳最外层大气——日冕。参考资料:太阳-百度百科


谁有八大行星在天空中的位置图?

八大行星按照离太阳的距离从近到远,它们依次为水星(☿)、金星(♀)、地球(⊕)、火星(♂)、木星(♃)、土星(♄)、天王星(♅)、海王星(♆)。八大行星自转方向多数也和公转方向一致。只有金星和天王星两个例外。金星自转方向与公转方向相反,天王星则是与公转轨道呈97°角的“躺着”旋转。扩展资料一、行星的特点:1、围绕恒星运转的天体。2、质量足够大,能依靠自身引力使天体呈圆球状。3、这个轨道附近应该没有其他物体(清理其轨道上其它物体)。水星最接近太阳 ,是太阳系中体积和质量最小的行星。常和太阳同时出没,中国古代称之它为“辰星”。水星在直径上小于木卫三和土卫六。二、太阳系包括八大行星、以及至少173颗已知的卫星、5颗已经辨认出来的矮行星,包括四个柯伊伯带天体,和数以亿计的太阳系小天体,和彗星。太阳系中的八大行星都位于差不多同一平面的近圆轨道上运行,朝同一方向绕太阳公转。除金星以外,其他行星的自转方向和公转方向相同。彗星的绕日公转方向大都相同,多数为椭圆形轨道,一般公转周期比较长。参考资料来源:百度百科-八大行星参考资料来源:百度百科-太阳系

读“太阳外部结构示意图”,完成下列问题。 (1)A、B、C三层中,亮度最大的是层。(2)A层太阳活动的形

(1)A(2)太阳内部核反应过程中产生大量的热能,使A层某一些区域突然增亮,某一些区域在明亮光球的衬托下,显得阴暗一些。(3)日珥、耀斑(4)增多 耀斑 太阳风 电离层 2015年 本题较全面地考查了有关太阳的主要知识点。第(1)题,光球层是太阳的主要发光层,而色球和日冕需在日全食或用特殊的望远镜、日冕仪才可观测到。第(2)题,是指光球层的黑子活动,其温度低于其他地方。第(3)题是指日珥。第(4)题要注意太阳活动周期为11年。


太阳的结构

太阳的内部结构: 1、核心:太阳的核心区域虽然很小,半径只占太阳半径的1/4,但却是产生核聚变反应之处,是太阳的能源所在地。2、辐射区:从太阳内部0.25~0.86个太阳半径区域称为太阳的辐射区。辐射区约占太阳体积的一半。太阳核心产生的能量,通过这个区域以辐射的方式向外传输。3、对流层:对流区处于辐射区的外面。由于巨大的温度差引起对流,内部的热量以对流的形式在对流区向太阳表面传输。除了通过对流和辐射传输能量外,对流层的太阳大气湍流还会产生低频声波扰动,这种声波将机械能传输到太阳外层大气,从而产生加热和其他作用。太阳的大气结构:1、光球层:对流层上面的太阳大气,称为太阳光球。太阳光球是一层不透明的气体薄层,厚度约500千米。它确定了太阳非常清晰的边界,几乎所有的可见光都是从这一层发射出来的。2、色球层:色球位于光球层之上。厚度约2000千米。由于色球层发出的可见光总量不及光球层的1%,因此人们平常看不到它。只有在发生日全食时,即食既之前几秒种或生光以后几秒钟,当光球所发射的明亮光线被月影完全遮掩的短暂时间内,在日面边缘呈现出狭窄的玫瑰红色的发光圈层,这就是色球层。3、日冕:日冕是太阳大气的最外层,由高温、低密度的等离子体所组成。亮度微弱,在白光中的总亮度比太阳圆面亮度的百分之一还低,相当于满月的亮度,因此只有在日全食时才能展现其光彩,平时观测则要使用日冕仪。日冕的温度高达百万度,其大小和形状与太阳活动有关,在太阳活动极大年时,日冕接近圆形;而在太阳活动宁静年则呈椭圆形。广义的日冕可包括地球轨道以内的范围。扩展资料:太阳是一个巨大而炽热的气体星球。知道了日地距离,再从地球上测得太阳圆面的视角直径,从简单的三角关系就可以求出太阳的半径为69.6万千米,是地球半径的109倍。由此可以算出太阳的体积为地球的130万倍。天文学家根据开普勒行星运动的第三定律,利用地球的质量和它环绕太阳运转的轨道半径及周期,还可以推算出太阳的质量为1.989×10³⁰千克,这个质量是地球的33万倍。并且集中了太阳系99.86%的质量。但是,即使这样一个庞然大物,在茫茫宇宙之中,却也不过只是一颗质量中等的普通恒星而已。由太阳的体积和质量,可以计算出太阳平均密度为1.409克/厘米³,约为地球平均密度的0.26倍。太阳表面的重力加速度等于2.739810厘米/秒,约为地球表面重力加速度的28倍,如果一个人站在太阳表面,那么他的体重将会是在地球上的20倍 。太阳表面的逃逸速度约617.7公里/秒,任何一个中性粒子的速度必须大于这个值,才能脱离太阳的吸引力而跑到宇宙空间中去。

太阳系是怎样形成的呢?

太阳系的形成大致是这样的,在引力作用下,一团原始星云物质开始聚集,物质运动中相互摩擦损失能量并开始向内坍缩,当中心区域聚集到足够的质量,在引力坍缩下核心温度开始上升,当温度达到氢元素核聚变所需的温度(约1000万K),核心附近的氢会被点燃核聚变。核聚变发生后,产生的高温辐射产生热膨胀,抵消了引力坍缩,导致物质向内的坍缩停止,引力坍缩和核聚变释放能量产生的热膨胀取得平衡,既不会在引力作用下向内收缩,也不会因热膨胀炸开,核心的氢元素开始稳定聚变,太阳进入主序星阶段。当太阳点燃核聚变后,辐射开始往外传递,由于从核心到太阳表面有厚厚的等离子体,光辐射会经过吸收在释放并渐渐损失能量,最终到达太阳表面时已经从1500W高温的辐射变成了5770K的黑体辐射(由于高温产生的热辐射)。光子从核心核聚变发出到到达太阳表面以黑体辐射形式发出,这过程是相当漫长的。而核心核反应过程中产生的中微子则会畅通无阻地向外辐射。当太阳被点燃后,辐射和太阳风瞬间吹散了周围的气体,气体不再向中心天体太阳坍缩,太阳的质量开始稳定下来,外围物质也开始聚集。由于内层气体被太阳风吹散,因此剩余气体较少,因此主要形成了一些固态行星,到了距离较远的木星轨道则保留了大量气体,木星得以吸收更多的尘埃和气体汇聚成气态巨行星。当形成的各大行星清扫了各自的轨道后,太阳系就大致成了我们现在看到的这个样子了。本来故事到这里就结束了,不过有读者提出这个描述不完整,因为没有解释我们赖以存在的众多重元素的来源问题。我想一下确实应该解释一下。不过前面写得太流畅了,我不知道该怎么把这些内容插进去,所以唯有接在最后了……根据恒星演化模型,当恒星核心核聚变进行到铁核聚变,核聚变产生的能量就不足以支撑引力坍缩从而无法进行下去了。这是因为铁的结合能较低,铁核聚变所产生能量与产生核聚变所需的能量相当,因此铁核聚变过程无法产生足以抵御引力坍缩的热膨胀,外层物质会以自由落体向内跌落,撞到核心坚硬的简并态铁核后产生剧烈反弹发生超新星爆炸。也就是,核聚变到铁为止,恒星核聚变就无法进行下去了,那么地球上那么多比铁更重的重元素是哪里来的?科学家一开始认为,就来自于前面所说的恒星末期的超新星爆发。大量元素从核心喷出,同时喷出的还有大量中子,在喷发过程中就发生了一个中子俘获的过程,大量的中子被爆发出的元素俘获形成大量的高中子数同位素。当原子核内中子数远超质子数时,原子核是不稳定的,因此在中子俘获过程结束后随即发生元素衰变,大量核内中子衰变成质子导致原子序数增加,更多的重元素因此产生。这一过程同样会发生在白矮星超过钱德拉塞卡极限发生Ia型超新星爆发的时候。是后来通过对超新星爆发的持续观察发现,超新星爆发无法产生现实中看到的足够多的重元素,特别是原子序数远高于铁的重元素,比如黄金等,这可能是由于超新星爆发过程产生的自由中子数有限导致的。于是有科学家提出一种理论模型,在双中子星合并过程中,碰撞瞬间会甩出含有大量中子的物质,在这一过程中可以形成各种超重元素。后面的事大家都知道了,在两年前全球科学家共同发布了双中子星合并的观测结果,通过光谱分析发现在抛射物里产生大量超重元素,其中就包括黄金。当时新闻里说碰撞中大约产生300个地球质量的黄金,这一消息“导致”发布会次日全球金价暴跌……那么问题又来了,这些重金属都是通过超新星爆发高速喷出的,它们是怎么被减速后凝聚的呢?一般认为就是当这是抛射物在穿过原始恒星气体云时,被减速并混入到气体云中,最终就形成了前面说的原始星云。故事正式结束了。

读“太阳系示意图”(如图所示),完成下列问题.(1)八颗行星中,B表示_______,D表示______.(2)以

(1)读图,依据八大行星距日远近关系,B为金星,D为火星.(2)以太阳为中心形成的天体系统为太阳系;以地球为中心形成的天体系统是地月系,共2级天体系统.(3)若地球运行的轨道变远,太阳与地球的距离变远,导致地球上的温度变低,符合题意的是A.(4)地球上有生命存在的自身条件从日地距离适中,质量、体积适中,自转、公转周期适中三方面分析.故答案为:(1)金星;火星. (2)2.(3)A. (4)日地距离适中;质量、体积适中;自转、公转周期适中.


太阳系在做什么运动?在宇宙中是什么个运动模式?

太阳系处在银河系的猎户臂上,围绕着银河系中心旋转。1、月球自转的同时,绕地球做接过圆的椭圆运动。(以地球为参照系)2、地球自转的同时,绕太阳做椭圆运动(以太阳为参照系)3、太阳带着它们绕银河系转动,这个系统非常复杂,很难描述,一般都是分开研究。4、银河系在宇宙中也不是静止的。太阳系是以太阳为中心,和所有受到太阳的引力约束天体的集合体。包括八大行星(由离太阳从近到远的顺序:水星、金星、地球、火星、木星、土星、天王星、海王星)、以及至少173颗已知的卫星、5颗已经辨认出来的矮行星和数以亿计的太阳系小天体。广义上,太阳系的领域包括太阳,四颗像地球的内行星,由许多小岩石组成的小行星带,四颗充满气体的巨大外行星和充满冰冻小岩石被称为柯伊伯带的第二颗小天体区。其中目前太阳系有八大行星,分别是水星,金星,地球,火星,木星,土星,天王星,海王星。扩展资料太阳系在银河中的位置是地球上能发展出生命的一个很重要的因素,它的轨道非常接近圆形,并且和旋臂保持大致相同的速度,这意味着它相对旋臂是几乎不动的。因为旋臂远离了有潜在危险的超新星密集区域,使得地球长期处在稳定的环境之中得以发展出生命。太阳系也远离了银河系恒星拥挤群聚的中心,接近中心之处,邻近恒星强大的引力对奥尔特云产生的扰动会将大量的彗星送入内太阳系,导致与地球的碰撞而危害到在发展中的生命。银河中心强烈的辐射线也会干扰到复杂的生命发展。即使在太阳系所在的位置,有些科学家也认为在35000年前曾经穿越过超新星爆炸所抛射出来的碎屑,朝向太阳而来的有强烈的辐射线,以及小如尘埃大至类似彗星的各种天体,曾经危及到地球上的生命。参考资料来源:百度百科-太阳系

上一篇:西游记第十九回

下一篇:国家新闻总署