atmega16

时间:2024-06-25 07:16:17编辑:coo君

ATmega16单片机的产品特性

u 高性能、低功耗的8位AVR微处理器l 先进的RISC 结构l 131条指令l 大多数指令执行时间为单个时钟周期l 32个8位通用工作寄存器l 全静态工作l 工作于16MHz时性能高达16MIPSl 只需两个时钟周期的硬件乘法器l 非易失性程序和数据存储器l 16K 字节的系统内可编程Flash,擦写寿命: 10,000次l 具有独立锁定位的可选Boot代码区,通过片上Boot程序实现系统内编程,真正的同时读写操作l 512 字节的EEPROM,擦写寿命: 100,000次l 1K字节的片内SRAMl 可以对锁定位进行编程以实现用户程序的加密l JTAG 接口( 与IEEE 1149.1 标准兼容)l 符合JTAG 标准的边界扫描功能l 支持扩展的片内调试功能l 通过JTAG 接口实现对Flash、EEPROM、熔丝位和锁定位的编程外设特点u 两个具有独立预分频器和比较器功能的8位定时器/计数器l 一个具有预分频器、比较功能和捕捉功能的16位定时器/计数器l 具有独立振荡器的实时计数器RTCl 四通道PWMl 8路10位ADC,8个单端通道,2个具有可编程增益(1x, 10x, 或200x)的差分通道l 面向字节的两线接口l 两个可编程的串行USARTl 可工作于主机/ 从机模式的SPI 串行接口l 具有独立片内振荡器的可编程看门狗定时器l 片内模拟比较器u 特殊的处理器特点l 上电复位以及可编程的掉电检测l 片内经过标定的RC振荡器l 片内/片外中断源l 6种睡眠模式: 空闲模式、ADC 噪声抑制模式、省电模式、掉电模式、Standby 模式以及扩展的Standby模式u I/O和封装l 32个可编程的I/O口l 40引脚PDIP封装, 44引脚TQFP封装, 与44引脚MLF封装u 工作电压:l ATmega16L:2.7 - 5.5Vl ATmega16:4.5 - 5.5Vu 速度等级l 8MHz ATmega16Ll 0-16MHz ATmega16u ATmega16L在1MHz, 3V, 25°C时的功耗l 正常模式: 1.1 mAl 空闲模式: 0.35 mAl 掉电模式: < 1 μA

ATmega16特性简介与结构简介有什么区别呀

特性指: 高性能、低功耗的 8 位 AVR® 微处理器   • 先进的RISC结构   – 131 条指令 – 大多数指令执行时间为单个时钟周期   –32 个8 位通用工作寄存器   – 全静态工作   – 工作于16 MHz 时性能高达16 MIPS   – 只需两个时钟周期的硬件乘法器   • 非易失性程序和数据存储器   – 16K 字节的系统内可编程 Flash   擦写寿命: 10,000 次   – 具有独立锁定位的可选Boot 代码区   通过片上Boot 程序实现系统内编程   真正的同时读写操作   – 512 字节的EEPROM   擦写寿命: 100,000 次   –1K 字节的片内SRAM   – 可以对锁定位进行编程以实现用结构特点: 两个具有独立预分频器和比较器功能的8 位定时器/ 计数器   – 一个具有预分频器、比较功能和捕捉功能的16 位定时器 /计数器   – 具有独立振荡器的实时计数器RTC   – 四通道PWM   –8路 10 位ADC   8 个单端通道   TQFP 封装的7 个差分通道   2个具有可编程增益 (1x, 10x, 或200x)的差分通道   – 面向字节的两线接口   – 两个可编程的串行USART   – 可工作于主机/从机模式的 SPI串行接口   – 具有独立片内振荡器的可编程看门狗定时器   – 片内模拟比较器


Atmega16的ATmega16 引脚功能

VCC 电源正GND 电源地端口A(PA7..PA0)端口A 做为A/D 转换器的模拟输入端。端口A 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口A 处于高阻状态。端口B(PB7..PB0)端口B 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口B 处于高阻状态。端口B 也可以用做其他不同的特殊功能.端口C(PC7..PC0)端口C 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口C 处于高阻状态。如果JTAG接口使能,即使复位出现引脚 PC5(TDI)、 PC3(TMS)与 PC2(TCK)的上拉电阻被激活。端口C 也可以用做其他不同的特殊功能.端口D(PD7..PD0)端口D 为8 位双向I/O 口,具有可编程的内部上拉电阻。其输出缓冲器具有对称的驱动特性,可以输出和吸收大电流。作为输入使用时,若内部上拉电阻使能,则端口被外部电路拉低时将输出电流。在复位过程中,即使系统时钟还未起振,端口D 处于高阻状态。端口D 也可以用做其他不同的特殊功能.RESET 复位输入引脚。持续时间超过最小门限时间的低电平将引起系统复位。门限时间见P36Table 15。持续时间小于门限间的脉冲不能保证可靠复位。XTAL1反向振荡放大器与片内时钟操作电路的输入端。XTAL2反向振荡放大器的输出端。AVCCAVCC是端口A与A/D转换器的电源。不使用ADC时,该引脚应直接与VCC连接。使用ADC时应通过一个低通滤波器与VCC 连接。AREFA/D 的模拟基准输入引脚。 右边为AVR 结构的方框图为了获得最高的性能以及并行性, AVR 采用了Harvard 结构,具有独立的数据和程序总线。程序存储器里的指令通过一级流水线运行。CPU 在执行一条指令的同时读取下一条指令( 在本文称为预取)。这个概念实现了指令的单时钟周期运行。程序存储器是可以在线编程的FLASH。快速访问寄存器文件包括32 个8 位通用工作寄存器,访问时间为一个时钟周期。从而实现了单时钟周期的ALU 操作。在典型的ALU 操作中,两个位于寄存器文件中的操作数同时被访问,然后执行运算,结果再被送回到寄存器文件。整个过程仅需一个时钟周期。寄存器文件里有6 个寄存器可以用作3 个16 位的间接寻址寄存器指针以寻址数据空间,实现高效的地址运算。其中一个指针还可以作为程序存储器查询表的地址指针。这些附加的功能寄存器即为16 位的X、Y、Z 寄存器。ALU支持寄存器之间以及寄存器和常数之间的算术和逻辑运算。ALU也可以执行单寄存器操作。运算完成之后状态寄存器的内容得到更新以反映操作结果。程序流程通过有/ 无条件的跳转指令和调用指令来控制,从而直接寻址整个地址空间。大多数指令长度为16 位,亦即每个程序存储器地址都包含一条16 位或32 位的指令。程序存储器空间分为两个区:引导程序区(Boot 区) 和应用程序区。这两个区都有专门的锁定位以实现读和读/ 写保护。用于写应用程序区的SPM 指令必须位于引导程序区。在中断和调用子程序时返回地址的程序计数器(PC) 保存于堆栈之中。堆栈位于通用数据SRAM,因此其深度仅受限于SRAM 的大小。在复位例程里用户首先要初始化堆栈指针SP。这个指针位于I/O 空间,可以进行读写访问。数据SRAM 可以通过5 种不同的寻址模式进行访问。AVR 存储器空间为线性的平面结构。AVR有一个灵活的中断模块。控制寄存器位于I/O空间。状态寄存器里有全局中断使能位。每个中断在中断向量表里都有独立的中断向量。各个中断的优先级与其在中断向量表的位置有关,中断向量地址越低,优先级越高。  I/O 存储器空间包含64 个可以直接寻址的地址,作为CPU 外设的控制寄存器、SPI,以及其他I/O 功能。映射到数据空间即为寄存器文件之后的地址0x20 - 0x5F。 1. 型号紧跟的字母,表示电压工作范围。带“L”:2.7-5.5V;若缺省,不带“L”:4.5-5.5V。例:ATmega48-20AU,不带“L”表示工作电压为4.5-5.5V。2. 后缀的数字部分,表示支持的最高系统时钟。  例:ATmega48-20AU,“20”表示可支持最高为20MHZ的系统时钟。3. 后缀第一(第二)个字母,表示封装。“P”:DIP封装,“A”:TQFP封装,“M”:MLF封装。  例:ATmega48-20AU,“A”表示TQFP封装。4. 后缀最后一个字母,表示应用级别。“C”:商业级,“I”:工业级(有铅)、“U”工业级(无铅)。  例:ATmega48-20AU,“U”表示无铅工业级。ATmega48-20AI,“I”表示有铅工业级。  AVR 8-Bit MCU的最大特点与其它8-Bit MCU相比,AVR 8-Bit MCU最大的特点是:· 哈佛结构,具备1MIPS / MHz的高速运行处理能力;· 超功能精简指令集(RISC),具有32个通用工作寄存器,克服了如8051 MCU采用单一ACC进行处理造成的瓶颈现象;· 快速的存取寄存器组、单周期指令系统,大大优化了目标代码的大小、执行效率,部分型号FLASH非常大,特别适用于使用高级语言进行开发;· 作输出时与PIC的HI/LOW相同,可输出40mA(单一输出),作输入时可设置为三态高阻抗输入或带上拉电阻输入,具备10mA-20mA灌电流的能力;· 片内集成多种频率的RC振荡器、上电自动复位、看门狗、启动延时等功能,外围电路更加简单,系统更加稳定可靠;· 大部分AVR片上资源丰富:带E2PROM,PWM,RTC,SPI,UART,TWI,ISP,AD,Analog Comparator,WDT等;· 大部分AVR除了有ISP功能外,还有IAP功能,方便升级或销毁应用程序。 目前,AVR已被广泛用于:· 空调控制板· 打印机控制板· 智能电表· 智能手电筒· LED控制屏· 医疗设备· GPS从市场角度看AVR单片机· 性价比:AVR大部分型号的性价比较高,性价比表现突出的型号有:atmega48、atmega8、atmega16、atmega169P· 供货方面:通用型号的AVR供货较为稳定,非常规型号的AVR样品及供货仍存在问题。· 市场占有率:目前,AVR的市场占有率还是不如PIC与51,但,AVR的优点使得AVR的市场占有一直在扩展,AVR的年用量也一直在上涨。

ATmega16单片机与51单片机的主要区别在哪里

  多了AD接口,多了PWM和其他一些资源,最主要的是运行速度快。
  单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域的广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的32位300M的高速单片机。


请问:AVR atmega16和atmega128的区别是什么呢?

  AVR atmega16和atmega128的区别是配置不同,
  ATmega128是ATMEL公司的 8位系列单片机的最高配置的一款单片机,稳定性极高,应用极其广泛。
  ATmega128TQFP封装现主要有这些型号:ATmega128-16AU、ATmega128-16AI。
  下面对ATmega128的型号标识进行解析:
  ①、型号紧跟的字母,表示电压工作范围。带“L”:2.7-5.5V;若缺省,不带“L”:4.5-5.5V。 例:ATmega128-16AU,不带“L”表示工作电压为4.5-5.5V。
  ②、后缀的数字部分,表示支持的最高系统时钟。 例:ATmega128-16AU,“16”表示可支持最高为16MHZ的系统时钟。
  ③、后缀第一(第二)个字母,表示封装。“P”:DIP封装,“A”:TQFP封装,“M”:MLF封装。 例:ATmega128-16AU,“A”表示TQFP封装。
  ④、后缀最后一个字母,表示应用级别。“C”:商业级,“I”:工业级(有铅)、“U”工业级(无铅)。 例:ATmega128-16AU,“U”表示无铅工业级。ATmega128-16AI,“I”表示有铅工业级。


上一篇:11108

下一篇:金寨县教育局