小学数学速算与巧算
第一题你要把括号打开,之后你就能看到什么数和什么数凑起来更好了,过程太麻烦了,如果有不懂的话再问我吧。
第二题的话是这样的,231÷231又232分之231,
先把后面的以方程的形式整合,
为232之分231×232+231,再把它倒过来,
就成了231×(231×232+231分之232)了,提取一下,
231×(231×(232+1)分之232),约掉就好啦
小学数学速算巧算
在小学数学计算教学中,经常会遇到计算1×2、2×3、3×4、4×5…… 也就是计算相邻的两个数的乘积。 而对于1×2+2×3+3×4+4×5+…… 这样繁琐的题目,是否有它的计算规律呢? 请看下面的算式: 1×2 = 2 =1×2×3÷3 1×2+2×3 = 8 =2×3×4÷3 1×2+2×3+3×4 =20= 3×4×5÷3 …… 1×2+2×3+3×4+……+(n-2)×(n-1)+(n-1)× n =(n-1)× n×(n+1)÷3 (其中 n为任意整数) 由此可见,对于任意一个整数,从1到它之间的每相邻两个数乘积的和都等于比它小1和比它大1及它本身三个数的乘积,再除以3 。 即对于任意一个整数n,都有 1×2+2×3+3×4+……+(n-2)×(n-1)+(n-1)× n =(n-1)× n×(n+1)÷3 根据这个规律,计算就显得简便多了,例如: 33×34+34×35+35×36+36×37+37×38 =(1×2+2×3+3×4+……+37×38)-(1×2+2×3+3×4+……+32×33) = 37×38×39÷3-32×33×34÷3 = 6310
计算巧算的方法有哪些
凑整巧算”——运用加法的交换律、结合律进行计算。运用乘法的交换律、结合律进行简算。运用减法的性质进行简算,同时注意逆进行。运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。运用乘法分配律进行简算。混合运算(根据混合运算的法则)。具体解释:一、“凑整巧算”——运用加法的交换律、结合律进行计算。凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。加法交换律 定义:两个数交换位置和不变,公式:A+B =B+A,例如:6+18+4=6+4+18加法结合律 定义:先把前两个数相加,或者先把后两个数相加,和不变。 公式:(A+B)+C=A+(B+C),例如:(6+18)+2=6+(18+2)引申——凑整例如:1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.889 二、运用乘法的交换律、结合律进行简算。乘法交换律 定义:两个因数交换位置,积不变. 公式:A×B=B×A 例如:125×12×8=125×8×12 乘法结合律 定义:先乘前两个因数,或者先乘后两个因数,积不变。 公式:A×B×C=A×(B×C),例如:30×25×4=30×(25×4)三、运用减法的性质进行简算,同时注意逆进行。减法 定义:一个数连续减去两个数,可以先把后两个数相加,再相减。 公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】例如:20-8-2=20-(8+2)四、运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。除法 定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。公式:A÷B÷C=A÷(B×C),例如:20÷8÷1.25=20÷(8×1.25) 定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)例如:64 ÷16=64÷8÷2=8÷2=4五、运用乘法分配律进行简算。乘法分配律 定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。 公式:(A+B)×C=A×C+B×C 例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251六、混合运算(根据混合运算的法则)。学会数字搭配( 0.5和2、0.25和4、0.125和8)
速算与巧算
比如:11*11=121之类的
一、乘法速算法:
特例一:两位数乘两位数,只要十位数相同,个位数相加等于10的。都能用这种算法。只需用十位数乘以比它大一的数,加上后两位数相乘即可。如果后两位数相乘只有一位时,前面要补0。如31*39=?先用3乘以比它大一的数4,为12,加上后两位数相乘1*9=9,只有一位,前面补0,为09,所以 31*39=1209。它的原理是:假若这两个两位数分别为ab=10a+b,ac=10a+c,且b+c=10。
则ab*ac=(10a+b)*(10a+c)=100a^2+10a(b+c)+bc=100a^2+100a+bc
=a(a+1)*100+bc,可以看到,只需用十位数a乘以比它大一的数a+1,然后补上两个位数的乘积bc,即可。
这里面又有一个特例,凡个位数为5的数的平方的速算。如35的平方,就是3*4=12,后面直接补上25,即得35^2=1225。现在您自己也可试下:95^2=9025。还可推广到小数,如6.5^2=?先算6*7=42,后面直接补上.25即可。所以6.5^2=42.25。
特例二:求11......1的平方。通常针对9个1以下的数的平方速算。方法是:有几个1,就由1写到几,再由大到小写到1。比如1111^2 =?有4个1,结果就是1234321。111111=?有六个1,就写到12345654321。你现在试下11111111^2=?
特例三:求99......9的平方。通常针对9个1以下的数的平方速算。方法是:用平方差公式速算。原理是:a^2=a^2-1+1=(a+ 1)(a-1)+1。描述为:先将此N位数减1,再补上N个0,再加上1,即为所求。所以求999的平方就是:999^2=(999-1)(999+1) +1=998*1000+1=998001。现在您也可以速算99999^2=?了。口中直接说出9999800001。
特例四:四位数9999乘四位数的速算。原理为:9999*abcd=(10000-1)*abcd=abcd0000-abcd=(abcd- 1)*10000+10000-abcd=(abcd-1)*10000+9999-(abcd-1)。所以9999乘四位数的原理是:先将要乘的四位数减1,这是前四位,而后四位再补上9999减去(abcd-1)的差值。这明显是特例,如将9999换成其它四位数就失效。
····························
二、平方差法:
实例一:359999是合数还是质数?
答:359999是合数。理由如下:
359999
=360000-1
=600^2-1
=(600+1)×(600-1)
=601×599
由于359999可以分解为两个大于1的正整数相乘,所以它是个合数。
可以看出,直接分解是相当麻烦和困难的。
三、裂项相消法:
实例:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+…+1/(a+2002)(a+2003)=???
解: 原式=1/a-1/(a+1)+1/(1+a)-1/(a+2)+.....+1/(a+2002)-1/(a+2003)
=1/a-1/(a+2003)
=2003/a(a+2003)
=2003/(a^2+2003a)
奥数中的巧算速算方法??
巧算公式乘法:分配律=ac+ab=a(b+c)结合律=abc=a(bc)交换律=ab=ac积不变性质=ab=(a÷c)×(bc)(c≠0)加法:结合律=a+b+c=a+(b+c)交换律=a+b=b+a除法:a÷b÷c=a÷(b×c)(b≠0,c≠0)商不变性质=a÷b=(a×d)÷(b×d)(b≠0,d≠0)=(a÷d)÷(b÷d)(b≠0,d≠0)减法:a-b-c=a-(b+c)速算方法全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。全脑速算的运算原理:通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。(1)以手作为运算器并产生直观的运算过程。(2)以大脑作为存储器将运算的过程快速产生反应并表示出。扩展资料国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助;第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克,匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。2013年参加这项赛事的代表队有80余支。美国1974年参加竞赛,中国1985年参加竞赛。经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化, 有了一整套约定俗成的常规,并为历届东道主所遵循。国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供;但旅费由参赛国自理。参赛选手必须是不超过20岁的中学生,每支代表队有学生6人;另派2名数学家为领队。试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。东道国不提供试题。试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。主试委员会由各国的领队及主办国指定的主席组成。这个主席通常是该国的数学权威。参考资料来源:百度百科-巧算参考资料来源:百度百科-速算
小学数学巧算和速算方法
巧算例子:125×19×8解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行解题过程:125×19×8=125×8×19=1000×19=19000扩展资料-计算过程:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;解题过程:步骤一:8×125=1000根据以上计算结果相加为1000存疑请追问,满意请采纳
速算巧算方法三年级
方法一:带符号搬家法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。a+b+c=a+c+ba+b-c=a-c+ba-b+c=a+c-ba-b-c=a-c-ba×b×c=a×c×ba÷b÷c=a÷c÷ba×b÷c=a÷c×ba÷b×c=a×c÷b方法二:结合律法(一)加括号法1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。(二)去括号法1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。方法三:乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配例:8×(3+7)=8×3+8×7=24+56=802.提取公因式注意相同因数的提取。例:9×8+9×2=9×(8+2)=9×10=903.注意构造,让算式满足乘法分配律的条件。例:8×99=8×(100-1)=8×100-8×1=800-8=792方法四:凑整法看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。例:9999+999+99+9=(10000-1)+(1000-1)+(100-1)+(10-1)=(10000+1000+100+10)-4=11110-4=11106方法五:拆分法拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。例:32×125×25=4×8×125×25=(4×25)×(8×125)=100×1000=100000方法六:巧变除为乘除以一个数等于乘以这个数的倒数方法七:裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
口算速算技巧
1、个位数是1。速算口诀:头乘头,头加头,尾是1,头加头如果超过10要进位。2、十位数是1。速算口诀:头是1,尾加尾,尾乘尾,超过10要进位。3、个位数都是9速算口诀:头数各加1,相乘再乘10,减去相加数,最后再减1。扩展资料:1,加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀——“本位相加(针对进位数)减加补,前位相加多加一”就可以彻底解决任意位数从高位数到低位数的加法速算问题。例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。2,减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀——“本位相减(针对借位数)加减补,前位相减多减一”就可以彻底解决任意位数从高位数到低位数的减法速算问题。例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。参考资料来源:百度百科-速算
数学速算方法有哪些?
一、充分利用五大定律教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。二、巧妙运用首同末合十利用首同末合十的方法来训练。首同末合十法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用首同末合十的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54x56=3024,81x89=7209。三、留心左右两数合并法任意的两位数乘上99或任意的三位数乘上999的速算法叫做左右两数合并法。1、任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62x99=6138,48x99=4752。2、任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781x999=780219,396x999=395604。四、利用分数与除法的关系来巧算在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,24/18x36/12=(24/18)x(36/12)=24/18x36/12=4。五、利用扩大缩小的规律进行简算有些除法计算题直接计算比较繁琐,而且容易算错,利用扩缩规律进行合理的变形可以找到简便的解决方法。比如,7/25=(7x4)/(25x4)=28/100=0.28,24/125=(24x8)/(125x8)=192/1000=0.192。
加减巧算速算方法
1加法交换律与加法结合律加法交换律:两个数相加,交换加数的位置,它们的和不变。即a+b=b+a一般地,多个数相加,任意改变相加的次序,其和不变。a+b+c+d=d+b+a+c加法结合律:几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:a+b+c = (a+b)+c = a+(b+c),2速算与巧算中常用的三大基本思想1.凑整 (目标:整十 整百 整千...)2.分拆(分拆后能够凑成 整十 整百 整千...)3.组合(合理分组再组合 )3常见方法凑整法两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数",利用"补数"巧算加法,通常称为"凑整法"如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。也就是说两个数互为"补数"。对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。如: 87655→12345, 46802→53198,87362→12638,…下面讲利用"补数"巧算加法,通常称为"凑整法"。巧算下面各题:①36+87+64②99+136+101③1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=3000组合凑整法(1)在加、减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”(2)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。(3)利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。基准法在减法运算过程中利用补数原理,先将几个减数凑整,再进行减法运算。在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。计算 78+76+83+82+77+80+79+85=640