全等三角形习题

时间:2024-07-03 01:13:14编辑:coo君

全等三角形练习题

八年级数学三角形全等测试题

一、填空(3分×10=30分)
1、如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm.∠E=∠B,则AC=________。
2、如图,某人把一块三角形的玻璃打碎成了三块,现在你要到玻璃店去配一块完全一样的玻璃,则应带哪块玻璃去__________(填上玻璃序号)。
3、已知△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°,如图所示,则△BAC′的度数为______。




4、如图,点D、E、F、B在同一直线上,AB‖CD、AE‖CF,且AE=CF,若BD=10,BF=2,则EF=____________。
5、△ABC中,AC=4,中线AD=6,则AB边的取值范围是______________。
6、已知如图,CD⊥AB,BE⊥AC,垂足分别为D、E、BE、CD相交于O点,∠1=∠2,图中全等的三角形共有________对。
7、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为_________。
8、如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。其中正确的结论是________(填序号)。





9、如图,已知铁路上A、B两站(视为线上两点)相距45km,C、D为铁路同旁的两个村庄(视为两点),DA⊥AB于A,CB⊥AB于B,DA=25km,CB=20km,现在要在铁路AB上建一个收购站E,使C、D两村庄到E站的距离相等,则E站应建在距A站_______km处。
10、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,
交BD于D,DE⊥AB于E,且AB=10,则△DEB周长为_______。
二、选择题(3分×10=30分)
11、如图△ABC≌△BAD,点A和点B,点C和点D是对应点,
若AB=6cm,BD=5cm,AD=4cm,则BC长为( )
A、4cm B、5cm C、6cm D、无法确定
12、如图△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,
∠AEC=120°,则∠DAC的度数等于( )
A、120° B、70° C、60° D、50°
13、在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,
在下面判断中错误的是( )
A、若添加条件AC=A′C′,则△ABC≌△A′B′C′
B、若添加条件BC=B′C′,则△ABC≌△A′B′C′
C、若添加条件∠B=∠B′,则△ABC≌△A′B′C′
D、若添加条件∠C=∠C′,则△ABC≌△A′B′C′
14、工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是( )
A、SSS B、SAS C、ASA D、HL
15、下列命题错误的是( )
A、全等三角形的对应线段相等 B、全等三角形的面积相等
C、一个锐角和相邻的直角边对应相等的两个直角三角形全等
D、两角对应相等的两个三角形全等
16、不能确定两三角形全等的条件是( )
A、三条边对应相等 B、两条边及其夹角对应相等
C、两角和一条边对应相等 D、两条边和一条边所对应的角对应相等
17、在△ABC和△A′B′C′中,①AB=A′B′;②BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′( )
A、①②③ B、①②⑤ C、①⑤⑥ D、①②④
18、如图△ABC中,∠C=90°,AB=2BC,D为AB中点过点D作DE⊥AB交AC于点E,下列结论:①CE=DE;②AE=BC;③∠B=2∠A;④∠A=30°中正确个数为( )
A、1个 B、2个 C、3个 D、4个
19、如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α ,则下列结论正确的是( )
A、2 α+∠A=180° B、α +∠A=90°
C、2α +∠A=90° D、 α+∠A=180°


20、如图,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,RS⊥AC于S,则三个结论:①AS=AR;②QP‖AR;③△BRP≌△QSP( )
A、全部正确 B、仅①和②正确
C、仅①正确 D、仅①和③正确
三、解答题
21、已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=58°,∠E=62°,MN=10cm,求∠P的度数及DE的长。(5分)
22、如图,D是AB上一点,DF交AC于点E,AE=CE,FC‖AB,求证:DE=EF。(5分)

23、如图,△ABC为等边三角形,点M、N,分别在BC、AC上,且BM=CN,AM与BN交于Q点,求∠AQN的度数。(6分

24、如图,点E在△ABC的外部,点D在BC边上,DE交AC于点F,若∠1=∠2 =∠3,AC=AE,求证:AB=AD。(6分)
25、如图,在正方形ABCD中,E是AD中点,F是BA延长线上一点,AF= AB,则线段BE与DF大小,位置有什么关系?并证明你的结论。(7分)
26、如图,AB‖CD,BE平分∠ABC,点E为AD中点,且BC=AB+CD,求证:CE平分∠BCD。(7分)
27、如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F。
(1)如图,①过A的直线与斜边BC不相交时,求证:EF=BE+CF(4分)
(2)如图,②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,试求:FE长。(4分)

28、在直角坐标系xOy中,O为坐标原点直线AB平行直线:y = x,且与x轴交于点A(-3,0),与y轴交于B点,点M、N在x轴上,(点M在点N的左边),点N在原点的右边作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B不重合)直线MP与y轴交于点G,MG=BN。
(1)求直线AB的解析式及B点坐标;(4分)
(2)求点M的坐标;(4分)
(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;(4分)
(4)若以A为锐角顶点,直角顶点D在x轴上的直角三角形ADF与以A、O、B为顶点的直角三角形全等,设F(a、b),求a、b值(只需写出结果,不必写出解答过程)。(4分)


全等三角形的经典例题

呵呵 给你找了个网站 里面有例题的 http://360edu.com/xxff/200710/chushu/5.htm
给分 给分
还有八年级数学三角形全等测试题

一、填空(3分×10=30分)
1、如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm.∠E=∠B,则AC=________。
2、如图,某人把一块三角形的玻璃打碎成了三块,现在你要到玻璃店去配一块完全一样的玻璃,则应带哪块玻璃去__________(填上玻璃序号)。
3、已知△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°,如图所示,则△BAC′的度数为______。




4、如图,点D、E、F、B在同一直线上,AB‖CD、AE‖CF,且AE=CF,若BD=10,BF=2,则EF=____________。
5、△ABC中,AC=4,中线AD=6,则AB边的取值范围是______________。
6、已知如图,CD⊥AB,BE⊥AC,垂足分别为D、E、BE、CD相交于O点,∠1=∠2,图中全等的三角形共有________对。
7、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为_________。
8、如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。其中正确的结论是________(填序号)。





9、如图,已知铁路上A、B两站(视为线上两点)相距45km,C、D为铁路同旁的两个村庄(视为两点),DA⊥AB于A,CB⊥AB于B,DA=25km,CB=20km,现在要在铁路AB上建一个收购站E,使C、D两村庄到E站的距离相等,则E站应建在距A站_______km处。
10、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,
交BD于D,DE⊥AB于E,且AB=10,则△DEB周长为_______。
二、选择题(3分×10=30分)
11、如图△ABC≌△BAD,点A和点B,点C和点D是对应点,
若AB=6cm,BD=5cm,AD=4cm,则BC长为( )
A、4cm B、5cm C、6cm D、无法确定
12、如图△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,
∠AEC=120°,则∠DAC的度数等于( )
A、120° B、70° C、60° D、50°
13、在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,
在下面判断中错误的是( )
A、若添加条件AC=A′C′,则△ABC≌△A′B′C′
B、若添加条件BC=B′C′,则△ABC≌△A′B′C′
C、若添加条件∠B=∠B′,则△ABC≌△A′B′C′
D、若添加条件∠C=∠C′,则△ABC≌△A′B′C′
14、工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是( )
A、SSS B、SAS C、ASA D、HL
15、下列命题错误的是( )
A、全等三角形的对应线段相等 B、全等三角形的面积相等
C、一个锐角和相邻的直角边对应相等的两个直角三角形全等
D、两角对应相等的两个三角形全等
16、不能确定两三角形全等的条件是( )
A、三条边对应相等 B、两条边及其夹角对应相等
C、两角和一条边对应相等 D、两条边和一条边所对应的角对应相等
17、在△ABC和△A′B′C′中,①AB=A′B′;②BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′( )
A、①②③ B、①②⑤ C、①⑤⑥ D、①②④
18、如图△ABC中,∠C=90°,AB=2BC,D为AB中点过点D作DE⊥AB交AC于点E,下列结论:①CE=DE;②AE=BC;③∠B=2∠A;④∠A=30°中正确个数为( )
A、1个 B、2个 C、3个 D、4个
19、如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α ,则下列结论正确的是( )
A、2 α+∠A=180° B、α +∠A=90°
C、2α +∠A=90° D、 α+∠A=180°


20、如图,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,RS⊥AC于S,则三个结论:①AS=AR;②QP‖AR;③△BRP≌△QSP( )
A、全部正确 B、仅①和②正确
C、仅①正确 D、仅①和③正确
三、解答题
21、已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=58°,∠E=62°,MN=10cm,求∠P的度数及DE的长。(5分)
22、如图,D是AB上一点,DF交AC于点E,AE=CE,FC‖AB,求证:DE=EF。(5分)

23、如图,△ABC为等边三角形,点M、N,分别在BC、AC上,且BM=CN,AM与BN交于Q点,求∠AQN的度数。(6分

24、如图,点E在△ABC的外部,点D在BC边上,DE交AC于点F,若∠1=∠2 =∠3,AC=AE,求证:AB=AD。(6分)
25、如图,在正方形ABCD中,E是AD中点,F是BA延长线上一点,AF= AB,则线段BE与DF大小,位置有什么关系?并证明你的结论。(7分)
26、如图,AB‖CD,BE平分∠ABC,点E为AD中点,且BC=AB+CD,求证:CE平分∠BCD。(7分)
27、如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F。
(1)如图,①过A的直线与斜边BC不相交时,求证:EF=BE+CF(4分)
(2)如图,②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,试求:FE长。(4分)

28、在直角坐标系xOy中,O为坐标原点直线AB平行直线:y = x,且与x轴交于点A(-3,0),与y轴交于B点,点M、N在x轴上,(点M在点N的左边),点N在原点的右边作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B不重合)直线MP与y轴交于点G,MG=BN。
(1)求直线AB的解析式及B点坐标;(4分)
(2)求点M的坐标;(4分)
(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;(4分)
(4)若以A为锐角顶点,直角顶点D在x轴上的直角三角形ADF与以A、O、B为顶点的直角三角形全等,设F(a、b),求a、b值(只需写出结果,不必写出解答过程)。(4分
.下列命题中正确的是( )
A.全等三角形的高相等 B.全等三角形的中线相等
C.全等三角形的角平分线相等 D.全等三角形对应角的平分线相等
2. 下列各条件中,不能做出惟一三角形的是( )
 A.已知两边和夹角 B.已知两角和夹边
 C.已知两边和其中一边的对角  D.已知三边
4.下列各组条件中,能判定△ABC≌△DEF的是( )
A.AB=DE,BC=EF,∠A=∠D
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周长= △DEF的周长
D.∠A=∠D,∠B=∠E,∠C=∠F

5.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,
则∠BCM:∠BCN等于( )
A.1:2 B.1:3   C.2:3  D.1:4



6.如图, ∠AOB和一条定长线段A,在∠AOB内找一点P,使P
到OA、OB的距离都等于A,做法如下:(1)作OB的垂线NH,
使NH=A,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平
分线OP,与NM交于P.(4)点P即为所求.
其中(3)的依据是( )
A.平行线之间的距离处处相等
B.到角的两边距离相等的点在角的平分线上
C.角的平分线上的点到角的两边的距离相等
D.到线段的两个端点距离相等的点在线段的垂直平分线上
7. 如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条
角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于( )
A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5
8.如图,从下列四个条件:①BC=B′C, ②AC=A′C,
③∠A′CB=∠B′CB,④AB=A′B′中,任取三个为条件,
余下的一个为结论,则最多可以构成正确的结论的个数是(   )
 A.1个 B.2个 C.3个 D.4个
9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上
取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在同
一条直线上,如图,可以得到 ,所以ED=AB,因
此测得ED的长就是AB的长,判定 的理由是( )
 A.  B.  C.  D.

10.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边
翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度
数为( )
 A.80°   B.100°   C.60°  D.45°.


二、仔仔细细填,记录自信!
11.如图,在△ABC中,AD=DE,AB=BE,∠A=80°,
则∠CED=_____.

12.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DEF的边中必有一条边等于______.
13. 在△ABC中,∠C=90°,BC=4CM,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为_____________.
14. 如图,△ABC是不等边三角形,DE=BC,以D ,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.

15. 如图, 分别是锐角三角形 和锐角三角形 中 边上的高,且 .若使 ,请你补充条件___________.(填写一个你认为适当的条件即可)







17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.
19. 如右图,已知在 中, 平
分 , 于 ,若 ,则
的周长为 .

20.在数学活动课上,小明提出这样一个问题:∠B=∠C=90 ,E是
BC的中点,DE平分∠ADC,∠CED=35 ,如图,则∠EAB是多少
度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.

三、平心静气做,展示智慧!
 
21.如图,公园有一条“ ”字形道路 ,其中
∥ ,在 处各有一个小石凳,且 ,
为 的中点,请问三个小石凳是否在一条直线上?
说出你推断的理由.







22.如图,给出五个等量关系:① ② ③ ④
⑤ .请你以其中两个为条件,另三个中的一个为结论,推出一个正确
的结论(只需写出一种情况),并加以证明.

已知:

求证:

证明:









23.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,
DN和EM相交于点C.
求证:点C在∠AOB的平分线上.










四、发散思维,游刃有余!
24. (1)如图1,以 的边 、 为边分别向外作正方形 和正方形
,连结 ,试判断 与 面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石
铺成.已知中间的所有正方形的面积之和是 平方米,内圈的所有三角形的面积之和
是 平方米,这条小路一共占地多少平方米?













参考答案
一、1—5:DCDCD 6—10:BCBBA
二、 11.100°
12.4cm或9.5cm
13.1.5cm
14.4
15.略
16.
17. 互补或相等
18. 180
19.15
20.35
三、 21.在一条直线上.连结 并延长交 于 证 .
22.情况一:已知:
求证: (或 或 )
证明:在△ 和△ 中


△ △



情况二:已知:
    求证: (或 或 )
    证明:在△ 和△ 中
     ,
    
     △ △
    
23.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴点C在∠AOB的平分线上.
四、24. (1)解: 与 面积相等
过点 作 于 ,过点 作 交 延长线于 ,则
四边形 和四边形 都是正方形





(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和
这条小路的面积为 平方米


找10道关于初一全等三角形的题 有图 有答案 快快快快快快快快快快!!!!

一、填空题(每题6分,共30分)
1.如图,△ABC和△DEF是全等三角形,若AB=DE,∠B=50°,∠C=70°,∠E=50°,则∠D的度数是_____


2.如图,△ABC≌△BAD,A和B,C和D是对应顶点,AB=6,BD=5,AD=4,则BC=____


3.已知△ABC中,∠C=90°,AD平分∠A交BC于点D,若BC=8,BD=5,则D到AB的距离是_____。

4.如图,∠1=∠2,要使△ABC≌△ADC,还需要添加一个条件是____



5.如图,直角三角形ABC内,点O到三角形三边的距离相等,则∠AOB=___。


二、选择题(每题6分,共30分)
6.△ABC中,D、E分别是AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是( )
A.15° B.20° C.25° D.30°

7.如图,AB=A1B1,∠A=∠A1,要使△ABC≌△A1B1C1,还需要( )


A.∠B=∠B1 B.∠C=∠C1 C.AC=A1C1 D.以上答案均可

8.如图,已知△ABC中,DF=FE,BD=CE,AF⊥BC,垂足为F,则此图中全等三角形共有( )对
A.5对 B.4对 C.3对 D.2对

9.两个三角形有两边和一角对应相等,则两个三角形( )
A.一定全等 B.一定不全等 C.可能全等,可能不全等 D.以上都不是

10.如图,已知AD‖BC,AD=BC,则下列结论正确的个数为( )
(1)AB=CD
(2)∠B=∠D
(3)∠1=∠2
(4)∠B+∠DCB=180 °
A.4个 B.3个 C.2个 D.1个

三、解答题(每题10分,共40分)
11.如图,已知BD=CD,BF⊥AC,CE⊥AB,求证:D在∠BAC的平分线上。


12.如图,已知点D、E在BC上,AB=AC,AH⊥BC于H,∠DAH=∠EAH,求证:BD=CE。



13.如图,AB=CD,DE⊥AC,BF⊥AC,E、F为垂足,DE=BF,求证:AB‖CD


14.四边形ABCD中,AD‖BC,若∠DAB的平分线AE交CD于E,连接BE,且BE恰好平分∠ABC,找出AB的长与AD+BC的长的大小关系,并证明你的结论。


15.已知:如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,CD⊥AE于F,且CD=AE,
(1)若连结BD,求∠DBC;
(2)若AC=12cm,求BD的长。


16.已知等边△ABC中,D、E分别是AC、BC上的点,BD、AE相交于一点N,BM⊥AE于M,若AD=CE。
(1)求证:△ABD≌△AEC
(2)求证:
参考资料:www.etiantian.com


全等三角形的解答过程

全等三角形判定方法一:SSS(边边边),即三边对应相等的两个三角形全等.
举例:如下图,AC=BD,AD=BC,求证∠A=∠B.
证明:在△ACD与△BDC中{AC=BD,AD=BC,CD=CD.
∴△ACD≌△BDC.(SSS)
∴∠A=∠B.(全等三角形的对应角相等)

全等三角形判定方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等.
举例:如下图,AB平分∠CAD,AC=AD,求证∠C=∠D.
证明:∵AB平分∠CAD.
∴∠CAB=∠BAD.
在△ACB与△ADB中{AC=AD,∠CAB=∠BAD,AB=AB.
∴△ACB≌△ADB.(SAS)
∴∠C=∠D.(全等三角形的对应角相等)

全等三角形判定方法三:ASA(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等.

举例:如下图,AB=AC,∠B=∠C,求证△ABE≌△ACD.
证明:在△ABE与△ACD中{∠A=∠A,AB=AC,∠B=∠C.
∴△ABE≌△ACD.(ASA)

全等三角形判定方法四:AAS(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等.

举例:如下图,AB=DE,∠A=∠E,求证∠B=∠D.
证明:在△ABC与△EDC中{∠A=∠E,∠ACB=∠DCE,AB=DE.
∴△ABC≌△EDC.(AAS)
∴∠B=∠D.(全等三角形的对应角相等)

全等三角形判定方法五:HL(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等.

举例:如下图,Rt△ADC与Rt△BCD,AC=BD,求证AD=BC.
证明:在Rt△ADC与Rt△BCD中{AC=BD,CD=CD.
∴Rt△ADC与Rt△BCD.(HL)
∴AD=BC.(全等三角形的对应边相等)


全等三角形证明题30个 偏难一点 有答案

已知AB=AC.,∠BAC=90°,AF⊥BD,D为AC的中点,连接BD交于D点。求证:∠ADF=∠CDE
证明:作∠BAC的角平分线AQ
∵AB=AC,∠BAQ=∠C=45°
且∠1+∠ADB=∠2+∠ADB
即∠1=∠2
∴三角形ABQ≌三角形CAE(SAS)
∴AQ=DE(全等三角形对应边相等)
∵AD=CD,AQ=CE,∠C=∠DAQ
∴三角形ADQ≌三角形DCE(SAS)
∴∠ADF=∠CDE(全等三角形对应角相等)


全等三角形练习题

图形全等——学习卷
学校 姓名
(一)三角形全等的识别方法




1、如图:△ABC与△DEF中 2、如图:△ABC与△DEF中
∵ ∵
∴△ABC≌△DEF( ) ∴△ABC≌△DEF( )

3、如图:△ABC与△DEF中 4、如图:△ABC与△DEF中
∵ ∵
∴△ABC≌△DEF( ) ∴△ABC≌△DEF( )

5、如图:Rt△ABC与Rt△DEF中,∠____=∠_____=90°

∴Rt△ABC≌Rt△DEF( )

(二)全等三角形的特征
∵△ABC≌△DEF
∴AB= ,AC= BC= ,
(全等三角形的对应边 )
∠A= ,∠B= ,∠C= ;
(全等三角形的对应边 )
(三)填空题
1、已知△ABD≌△CDB,AB与CD是对应边,那么AD= ,∠A= ;

2、如图,已知△ABE≌△DCE,AE=2cm,BE=1.5cm,
∠A=25°∠B=48°;那么DE= cm,EC= cm,
∠C= 度;∠D= 度;

3、如图,△ABC≌△DBC,∠A=800,∠ABC=300,
则∠DCB= 度;

(第4小题) 第5小题



4、如图,若△ABC≌△ADE,则对应角有 ;
对应边有 (各写一对即可);

5、如图,已知,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,
(1)若以“SAS”为依据,还须添加的一个条件为 ;
(2)若以“ASA”为依据,还须添加的一个条件为 ;
(3)若以“AAS”为依据,还须添加的一个条件为 ;

6、如图,平行四边形ABCD中,图中的全等三角形
是 ;

7、如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,只需
增加的一个条件是 ;
(只需填写一个你认为适合的条件)


8、分别根据下列已知条件,再补充一个条件使得下图中的△ABD和△ACE全等;
(1) , , ;
(2) , , ;
(3) , , ;

9、如图,AC=BD,BC=AD,说明△ABC和△BAD全等的理由.
证明:在△ABC与△BAD中,

∴△ABC≌△BAD( )

10、如图, CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.
证明∵CE=DE, EA=EB
∴________=________
在△ABC和△BAD.中,

∴△ABC≌△BAD.( )

(四)解答题:
1、如图,已知AC=AB,∠1=∠2;求证:BD=CE








2、点M是等腰梯形ABCD底边AB的中点,△AMD和△BMC全等吗?为什么?








3、已知:如图,AB‖CD,AB=CD,BE‖DF;
求证:BE=DF;








(选做题)
4、在△ABC中∠BAC是锐角,AB=AC,AD和BE是高,它们交于点H,且AE=BE;
(1)求证:AH=2BD;
(2)若将∠BAC改为钝角,其余条件不变,上述的结论还成立?若成立,请证明;若不成立,请说明理由;


全等三角形练习题(以及答案.附图)

一、△ABC的两条高BD、CE相交于点P,且PD=PE。求证:AC=AB。
简证:连AP。
因为∠PDA=∠PEA=90°,PD=PE,PA=PA,
所以 △PDA≌ △PEA(HL)。
所以AD=AE。
因为∠1=90°-∠CAB=∠2,
所以 △ACE≌ △ABD(AAS)。
所以AC=AB。
二、△ABC中,∠ACB=90°,AC=BC,BD是中线,CE⊥BD于点E,交AB于点F。求证:∠ADF=∠CDE。
简证:过点A作AG⊥AC交CF的延长线于点G。
因为∠1=90°-∠3=∠2,AC=BC,
所以 △CAG≌ △BCD(ASA)。
所以AG=CD=AD,∠G=∠CDE。
因为∠4=45°=∠5,AF=AF,
所以△ADF≌△AGF(SAS)。
所以∠ADF=∠G=∠CDE。


急求一道关于全等三角形的数学题证明过程!

O为三角形ABC的内心,到三边的距离相等为r,及内切圆半径。
因为AO=3OD, 所以 SΔAOC=3SΔCOD;
又SΔAOC=AC*r/2,SΔCOD=CD*r/2;
所以 AC=3CD。
连接BO,BO也为角平分线,所以同理也有AB=3BD。
由勾股定理,AC^2=AB^2+BC^2
AC^2-AB^2=(AC-AB)(AC+AB)=(AC-AB)(3CD+3BD)=3(AC-AB)BC=BC^2
所以有 AC-AB=BC/3 ,又 AB+AC=3BC,那么 AB=4BC/3 ,AC=5BC/3.

依旧用面积法,可得 BE/AE =BC/AC,
BE/AE +1 =BC/AC+1,
AB/AE =(AC+BC)/AC
AC/AE= (AC+BC)/AB=2
所以AC=2AE


上一篇:第一波士顿

下一篇:基金162607